Giải mục 2 trang 82 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:42

Hoạt động 2

Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).

a) Xét tính liên tục của hàm số tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).

b) Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) và so sánh giá trị này với \(f\left( 2 \right)\).

c) Với giá trị nào của \(k\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\)?

Phương pháp giải:

a) Bước 1: Tính \(f\left( {{x_0}} \right)\).

Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) (nếu có).

Bước 3: Kết luận:

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số liên tục tại điểm \({x_0}\).

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) hoặc không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) thì hàm số không liên tục tại điểm \({x_0}\).

b) Áp dụng các công thức tính giới hạn của hàm số.

c) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và giải phương trình \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).

Lời giải chi tiết:

a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).

Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).

b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 2 + 1 = 3\).

\(f\left( 2 \right) = 2 + 1 = 3\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\).

c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \Leftrightarrow 2 = k \Leftrightarrow k = 2\)

Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).


Thực hành 2

Xét tính liên tục của hàm số \(y = \sqrt {x - 1}  + \sqrt {2 - x} \) trên \(\left[ {1;2} \right]\).

Phương pháp giải:

Bước 1: Xét tính liên tục của hàm số trên khoảng \(\left( {a;b} \right)\).

Bước 2: Tính giới hạn \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right)\) và so sánh \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right)\) với \(f\left( a \right)\), \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right)\) với \(f\left( b \right)\).

Bước 3: Kết luận.

Lời giải chi tiết:

Đặt \(f\left( x \right) = \sqrt {x - 1}  + \sqrt {2 - x} \)

Với mọi \({x_0} \in \left( {1;2} \right)\), ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {\sqrt {x - 1}  + \sqrt {2 - x} } \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {x - 1}  + \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2 - x} \\ & \,\,\,\,\, = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1}  + \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 2 - \mathop {\lim }\limits_{x \to {x_0}} x}  = \sqrt {{x_0} - 1}  + \sqrt {2 - {x_0}}  = f\left( {{x_0}} \right)\end{array}\)

Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1;2} \right)\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\sqrt {x - 1}  + \sqrt {2 - x} } \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\sqrt {x - 1}  + \sqrt {2 - x} } \right)\\ &  = \sqrt {\mathop {\lim }\limits_{x \to {1^ + }} x - \mathop {\lim }\limits_{x \to {1^ + }} 1}  + \sqrt {\mathop {\lim }\limits_{x \to {1^ + }} 2 - \mathop {\lim }\limits_{x \to {1^ + }} x}  = \sqrt {1 - 1}  + \sqrt {2 - 1}  = 1 = f\left( 1 \right)\end{array}\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {x - 1}  + \sqrt {2 - x} } \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {x - 1}  + \sqrt {2 - x} } \right)\\ &  = \sqrt {\mathop {\lim }\limits_{x \to {2^ - }} x - \mathop {\lim }\limits_{x \to {2^ - }} 1}  + \sqrt {\mathop {\lim }\limits_{x \to {2^ - }} 2 - \mathop {\lim }\limits_{x \to {2^ - }} x}  = \sqrt {2 - 1}  + \sqrt {2 - 2}  = 1 = f\left( 2 \right)\end{array}\)

Vậy hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {1;2} \right]\).


Vận dụng 1

Tại một xưởng sản xuất bột đã thạch anh, giá bán (tính theo nghìn đồng) của \(x\) (kg) bột đã thạch anh được tính theo công thức sau:

\(P\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{4,5x}&{khi\,\,0 < x \le 400}\\{4x + k}&{khi\,\,x > 400}\end{array}} \right.\)                (\(k\) là một hãng số).

a) Với \(k = 0\), xét tính liên tục của hàm số \(P\left( x \right)\) trên \(\left( {0; + \infty } \right)\).

b) Với giá trị nào của \(k\) thì hàm số \(P\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)?

Phương pháp giải:

a) Xét tính liên tục của hàm số tại các điểm \({x_0} \in \left( {0;400} \right),{x_0} \in \left( {400; + \infty } \right)\) và điểm \({x_0} = 400\), từ đó đưa ra kết luận.

b) Bước 1: Xét tính liên tục của hàm số tại các điểm \({x_0} \in \left( {0;400} \right),{x_0} \in \left( {400; + \infty } \right)\).

Bước 2: Tính \(\mathop {\lim }\limits_{x \to 400} P\left( x \right)\) và \(P\left( {400} \right)\).

Bước 3: Giải phương trình \(\mathop {\lim }\limits_{x \to 400} P\left( x \right) = P\left( {400} \right)\) để tìm \(k\).

a) Xét tính liên tục của hàm số tại các điểm \({x_0} \in \left( {0;400} \right),{x_0} \in \left( {400; + \infty } \right)\) và điểm \({x_0} = 400\), từ đó đưa ra kết luận.

b) Bước 1: Xét tính liên tục của hàm số tại các điểm \({x_0} \in \left( {0;400} \right),{x_0} \in \left( {400; + \infty } \right)\).

Bước 2: Tính \(\mathop {\lim }\limits_{x \to 400} P\left( x \right)\) và \(P\left( {400} \right)\).

Bước 3: Giải phương trình \(\mathop {\lim }\limits_{x \to 400} P\left( x \right) = P\left( {400} \right)\) để tìm \(k\).

Lời giải chi tiết:

a) Với \(k = 0\), hàm số có dạng \(P\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{4,5x}&{khi\,\,0 < x \le 400}\\{4x}&{khi\,\,x > 400}\end{array}} \right.\)

• Với mọi \({x_0} \in \left( {0;400} \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} P\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {4,5x} \right) = 4,5\mathop {\lim }\limits_{x \to {x_0}} x = 4,5{x_0} = P\left( {{x_0}} \right)\)

Vậy hàm số \(y = P\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {0;400} \right)\).

• Với mọi \({x_0} \in \left( {400; + \infty } \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} P\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {4x} \right) = 4\mathop {\lim }\limits_{x \to {x_0}} x = 4{x_0} = P\left( {{x_0}} \right)\)

Vậy hàm số \(y = P\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {400; + \infty } \right)\).

• \(f\left( {400} \right) = 4,5.400 = 1800\).

\(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ + }} \left( {4x} \right) = 4\mathop {\lim }\limits_{x \to {{400}^ + }} x = 4.400 = 1600\).

\(\mathop {\lim }\limits_{x \to {{400}^ - }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ - }} \left( {4,5x} \right) = 4,5.\mathop {\lim }\limits_{x \to {{400}^ - }} x = 4,5.400 = 1800\).

Vì \(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) \ne \mathop {\lim }\limits_{x \to {{400}^ - }} {\rm{ }}P\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 400} P\left( x \right)\).

Vậy hàm số không liên tục tại điểm \({x_0} = 400\).

Vậy hàm số \(y = f\left( x \right)\) không liên tục trên \(\left( {0; + \infty } \right)\).

b) Xét hàm số \(P\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{4,5x}&{khi\,\,0 < x \le 400}\\{4x + k}&{khi\,\,x > 400}\end{array}} \right.\) (\(k\) là một hãng số)

Hàm số liên tục trên các khoảng \(\left( {0;400} \right)\) và \(\left( {400; + \infty } \right)\).

Ta có: \(f\left( {400} \right) = 4,5.400 = 1800\).

\(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ + }} \left( {4x + k} \right) = 4\mathop {\lim }\limits_{x \to {{400}^ + }} x + \mathop {\lim }\limits_{x \to {{400}^ + }} k = 4.400 + k = 1600 + k\).

\(\mathop {\lim }\limits_{x \to {{400}^ - }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ - }} \left( {4,5x} \right) = 4,5.\mathop {\lim }\limits_{x \to {{400}^ - }} x = 4,5.400 = 1800\).

Để hàm số \(y = P\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thì hàm số \(y = P\left( x \right)\) phải liên tục tại điểm \({x_0} = 400\).

Để hàm số liên tục tại điểm \({x_0} = 400\) thì:

\(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ - }} P\left( x \right) = f\left( {400} \right) \Leftrightarrow 1600 + k = 1800 \Leftrightarrow k = 200\)

Vậy với \(k = 200\) thì hàm số \(P\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"