Giải mục 1 trang 80, 81 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:42

Hoạt động 1

Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}1&{khi\,\,0 \le x \le 1}\\{1 + x}&{khi\,\,1 < x \le 2}\\{5 - x}&{khi\,\,2 < x \le 3}\end{array}} \right.\) có đồ thị như Hình 1.

Tại mỗi điểm \({x_0} = 1\) và \({x_0} = 2\), có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) không? Nếu có, giới hạn đó có bằng \(f\left( {{x_0}} \right)\) không?

Phương pháp giải:

Bước 1: Tính các giới hạn một bên \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right),\mathop {\lim }\limits_{x \to {x_0}^ - } {\rm{ }}f\left( x \right)\).

Bước 2: So sánh \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right),\mathop {\lim }\limits_{x \to {x_0}^ - } {\rm{ }}f\left( x \right)\)

                • Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}^ - } {\rm{ }}f\left( x \right) = L\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\).

                • Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) \ne \mathop {\lim }\limits_{x \to {x_0}^ - } {\rm{ }}f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).

Lời giải chi tiết:

• \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {1 + x} \right) = 1 + 1 = 2\).

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} 1 = 1\).

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

• \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {5 - x} \right) = 5 - 2 = 3\).

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {1 + x} \right) = 1 + 2 = 3\).

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {\rm{ }}f\left( x \right) = 3\) nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 3\).

Ta có: \(f\left( 2 \right) = 1 + 2 = 3\).

Vậy \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\).


Thực hành 1

Xét tính liên tục của hàm số:

a) \(f\left( x \right) = 1 - {x^2}\) tại điểm \({x_0} = 3\);  

b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 1}&{khi\,\,x > 1}\\{ - x}&{khi\,\,x \le 1}\end{array}} \right.\) tại điểm \({x_0} = 1\).

Phương pháp giải:

Bước 1: Kiểm tra \({x_0}\) thuộc tập xác định. Tính \(f\left( {{x_0}} \right)\).

Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) (nếu có).

Bước 3: Kết luận:

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số liên tục tại điểm \({x_0}\).

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) hoặc không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) thì hàm số không liên tục tại điểm \({x_0}\).

Lời giải chi tiết:

a) \(f\left( 3 \right) = 1 - {3^2} = 1 - 9 =  - 8\).

\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \left( {1 - {x^2}} \right) = 1 - {3^2} = 1 - 9 =  - 8\).

Vì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) =  - 8\) nên hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 3\).

b) \(f\left( 1 \right) =  - 1\).

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} \right) = {1^2} + 1 = 2\).

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) =  - 1\).

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)

Vậy hàm số không liên tục tại điểm \({x_0} = 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"