Bài 2 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:49

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M\) là trung điểm của \(SC\).

a) Tìm giao điểm \(I\) của đường thẳng \(AM\) và mặt phẳng \(\left( {SBD} \right)\). Chứng minh \(IA = 2IM\).

b) Tìm giao điểm \(E\) của đường thẳng \(S{\rm{D}}\) và mặt phẳng \(\left( {ABM} \right)\).

c) Gọi \(N\) là một điểm tuỳ ý trên cạnh \(AB\). Tìm giao điểm của đường thẳng \(MN\) và mặt phẳng \(\left( {SBD} \right)\).

Phương pháp giải - Xem chi tiết

‒ Để tìm giao điểm của đường thẳng và mặt phẳng, ta tìm giao điểm của đường thẳng đó với một đường thẳng trong mặt phẳng.

‒ Để chứng minh \(IA = 2IM\), ta dựa vào tính chất trọng tâm của tam giác.

Lời giải chi tiết

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) là giao điểm của \(AM\) và \(SO\). Ta có:

\(\left. \begin{array}{l}I \in SO \subset \left( {SB{\rm{D}}} \right)\\I \in AM\end{array} \right\} \Rightarrow I = AM \cap \left( {SB{\rm{D}}} \right)\)

Xét tam giác \(SAC\) có:

\(ABCD\) là hình bình hành \( \Rightarrow O\) là trung điểm của \(AC\)

Theo đề bài ta có \(M\) là trung điểm của \(SC\)

Mà \(I = SO \cap AM\)

\( \Rightarrow I\) là trọng tâm của .

b) Gọi \(E\) là giao điểm của \(S{\rm{D}}\) và \(BI\). Ta có:

\(\left. \begin{array}{l}E \in BI \subset \left( {ABM} \right)\\E \in S{\rm{D}}\end{array} \right\} \Rightarrow E = S{\rm{D}} \cap \left( {ABM} \right)\)

c) Gọi \(J\) là giao điểm của \(MN\) và \(BE\). Ta có:

\(\left. \begin{array}{l}J \in BE \subset \left( {SB{\rm{D}}} \right)\\J \in MN\end{array} \right\} \Rightarrow J = MN \cap \left( {SB{\rm{D}}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"