Bài 4 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:42:31

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \({G_1}\) và \({G_2}\) lần lượt là trọng tâm của hai tam giác \(BDA'\) và \(B'D'C\). Chứng minh \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.

Phương pháp giải - Xem chi tiết

‒ Sử dụng tính chất hình hộp.

‒ Sử dụng tính chất trọng tâm của tam giác.

Lời giải chi tiết

Gọi \(O = AC \cap B{\rm{D}},O' = A'C' \cap B'{\rm{D}}',I = AC' \cap A'C\)

Vì \(AA'\parallel CC',AA' = CC'\) theo tính chất hình hộp nên \(AA'C'C\) là hình bình hành \( \Rightarrow I\) là trung điểm của \(AC'\) và \(A'C\).

Ta có: \({G_1}\) là trọng tâm của tam giác \(BDA' \Rightarrow \frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\)

Tam giác \(AA'C\) có \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) nên \({G_1}\) là trọng tâm của tam giác \(AA'C\)

Mà \(I\) là trung điểm của \(A'C\) nên \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow A{G_1} = \frac{2}{3}AI\)

Mà \(AI = \frac{1}{2}AC'\)

\( \Rightarrow A{G_1} = \frac{1}{3}AC'\left( 1 \right)\)

Ta có: \({G_2}\) là trọng tâm của tam giác \(B'D'C \Rightarrow \frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\)

Tam giác \(ACC'\) có \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\) nên \({G_2}\) là trọng tâm của tam giác \(ACC'\)

Mà \(I\) là trung điểm của \(AC'\) nên \(\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow C'{G_2} = \frac{2}{3}C'I\)

Mà \(C'I = \frac{1}{2}AC'\)

\( \Rightarrow C'{G_2} = \frac{1}{3}AC'\left( 2 \right)\)

Từ (1) và (2) suy ra \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"