Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:42:53

Đề bài

Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha  \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha  \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).

a) Chứng minh rằng \(MNPQ\) là hình thang cân.

b) Đặt \(AM = x\), tính diện tích \(MNPQ\) theo \(a\) và \(x\).

Phương pháp giải - Xem chi tiết

Sử dụng các định lí:

‒ Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đổi một song song.

‒ Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.

Lời giải chi tiết

a) Ta có:

\(\left. \begin{array}{l}\left( \alpha  \right) \cap \left( {SBC} \right) = PQ\\\left( \alpha  \right) \cap \left( {ABCD} \right) = MN\\\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\end{array} \right\} \Rightarrow MN\parallel PQ\parallel BC\)

\( \Rightarrow MNPQ\) là hình thang (1).

\(\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = MQ\\\left( {SA{\rm{D}}} \right) \cap \left( {SAB} \right) = SA\end{array} \right\} \Rightarrow MQ\parallel SA \Rightarrow \frac{{MQ}}{{SA}} = \frac{{BM}}{{AB}}\)

\(\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha  \right) \cap \left( {SC{\rm{D}}} \right) = NP\\\left( {SA{\rm{D}}} \right) \cap \left( {SC{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow NP\parallel SD \Rightarrow \frac{{NP}}{{SD}} = \frac{{CN}}{{C{\rm{D}}}}\)

\(\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha  \right) \cap \left( {ABC{\rm{D}}} \right) = MN\\\left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = AD\end{array} \right\} \Rightarrow MN\parallel AD\parallel BC \Rightarrow \frac{{BM}}{{AB}} = \frac{{CN}}{{C{\rm{D}}}}\)

\( \Rightarrow \frac{{MQ}}{{SA}} = \frac{{NP}}{{S{\rm{D}}}}\)

Mà tam giác \(SAD\) đều nên \(SA = S{\rm{D}}\)

\( \Rightarrow MQ = NP\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow MNPQ\) là hình thang cân.

b) Gọi \(I = MQ \cap NP\). Ta có:

\(\left. \begin{array}{l}\left( {SAB} \right) \cap \left( {SA{\rm{D}}} \right) = SI\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SC{\rm{D}}} \right) \cap \left( {ABCD} \right) = C{\rm{D}}\end{array} \right\} \Rightarrow SI\parallel AB\parallel C{\rm{D}}\)

\(SI\parallel N{\rm{D}},S{\rm{D}}\parallel NI \Rightarrow SIN{\rm{D}}\) là hình bình hành \( \Rightarrow S{\rm{D}} = NI\)

\(SI\parallel MA,S{\rm{A}}\parallel MI \Rightarrow SIMA\) là hình bình hành \( \Rightarrow S{\rm{A}} = MI\)

Xét tam giác \(IMN\) và tam giác \(SAD\) có: \(MN\parallel A{\rm{D,}}MI\parallel SA,NI\parallel S{\rm{D}},MN = A{\rm{D}}\)

 tam giác \(IMN\) là tam giác đều cạnh \(a\).

\(\begin{array}{l}SI\parallel AB \Rightarrow \frac{{SI}}{{BM}} = \frac{{IQ}}{{QM}} \Leftrightarrow \frac{{SI}}{{BM + SI}} = \frac{{IQ}}{{QM + IQ}} \Leftrightarrow \frac{{SI}}{{BM + MA}} = \frac{{IQ}}{{QM + IQ}}\\ \Leftrightarrow \frac{{SI}}{{AB}} = \frac{{IQ}}{{MI}} \Leftrightarrow IQ = \frac{{SI.MI}}{{AB}} = \frac{{x.a}}{a} = x\end{array}\)

\({S_{IMN}} = \frac{{{a^2}\sqrt 3 }}{4},{S_{IPQ}} = \frac{{{x^2}\sqrt 3 }}{4} \Rightarrow {S_{MNPQ}} = {S_{IMN}} - {S_{IPQ}} = \frac{{{a^2}\sqrt 3 }}{4} - \frac{{{x^2}\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{4}\left( {{a^2} - {x^2}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"