Đề bài
Cân nặng của một số lợn con mới sinh thuộc hai giống A và B được cho ở biểu đồ dưới đây (đơn vị: kg).
a) Hãy so sánh cân nặng của lợn con mới sinh giống A và giống B theo số trung bình và trung vị.
b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của cân nặng lợn con mới sinh giống A và của cân nặng lợn con mới sinh giống B.
Phương pháp giải - Xem chi tiết
Lập bảng tần số ghép nhóm rồi tính số trung bình, số trung vị, tứ phân vị thứ nhất và thứ ba theo bảng tần số ghép nhóm rồi so sánh.
Lời giải chi tiết
Ta có số liệu thống kê cân nặng của một số lợn con mới sinh thuộc hai giống A và B như sau:
• Tổng số lợn con giống A là: \(n = 8 + 28 + 32 + 17 = 85\)
Cân nặng trung bình của lợn con giống A là:
\(\bar x = \frac{{8.1,05 + 28.1,15 + 32.1,25 + 17.1,35}}{{85}} \approx 1,22\left( {kg} \right)\)
Nhóm chứa số trung vị của giống A là: \(\begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array}\)
Ta có: \(n = 85;{n_m} = 31;C = 8 + 28 = 36;{u_m} = 1,2;{u_{m + 1}} = 1,3\)
Trung vị của cân nặng của lợn con giống A là:
\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,2 + \frac{{\frac{{85}}{2} - 31}}{{36}}.\left( {1,3 - 1,2} \right) \approx 1,23\left( {kg} \right)\)
• Tổng số lợn con giống B là: \(n = 13 + 14 + 24 + 14 = 65\)
Cân nặng trung bình của lợn con giống B là:
\(\bar x = \frac{{13.1,05 + 14.1,15 + 24.1,25 + 14.1,35}}{{65}} = 1,21\left( {kg} \right)\)
Nhóm chứa số trung vị của giống B là: \(\begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array}\)
Ta có: \(n = 65;{n_m} = 24;C = 13 + 14 = 27;{u_m} = 1,2;{u_{m + 1}} = 1,3\)
Trung vị của cân nặng của lợn con giống B là:
\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,2 + \frac{{\frac{{65}}{2} - 27}}{{24}}.\left( {1,3 - 1,2} \right) \approx 1,22\left( {kg} \right)\)
Vậy số cân nặng trung bình và số trung vị giống A lớn hơn giống B.
b) • Giống A
Gọi \({x_1};{x_2};...;{x_{85}}\) là cân nặng của các con lợn con được xếp theo thứ tự không giảm.
Ta có:
\({x_1},...,{x_8} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,0;1,1} \right)}\end{array}}\end{array};{x_9},...,{x_{36}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,1;1,2} \right)}\end{array}}\end{array}}\end{array};{x_{37}},...,{x_{68}} \in \begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array};{x_{69}},...,{x_{85}} \in \begin{array}{*{20}{l}}{\;\left[ {1,3;1,4} \right)}\end{array}\)
Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_{21}} + {x_{22}}} \right)\).
Ta có: \(n = 85;{n_m} = 28;C = 8;{u_m} = 1,1;{u_{m + 1}} = 1,2\)
Do \({x_{21}},{x_{22}} \in \begin{array}{*{20}{c}}{\left[ {1,1;1,2} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:
\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,1 + \frac{{\frac{{85}}{4} - 8}}{{28}}.\left( {1,2 - 1,1} \right) \approx 1,15\)
Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{64}} + {x_{65}}} \right)\).
Ta có: \(n = 85;{n_j} = 32;C = 8 + 28 = 34;{u_j} = 1,2;{u_{j + 1}} = 1,3\)
Do \({x_{64}},{x_{65}} \in \begin{array}{*{20}{c}}{\left[ {1,2;1,3} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:
\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 1,2 + \frac{{\frac{{3.85}}{4} - 34}}{{32}}.\left( {1,3 - 1,2} \right) \approx 1,29\)
• Giống B
Gọi \({y_1};{y_2};...;{y_{65}}\) là cân nặng của các con lợn con được xếp theo thứ tự không giảm.
Ta có:
\({y_1},...,{y_{13}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,0;1,1} \right)}\end{array}}\end{array};{y_{14}},...,{y_{27}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\;\left[ {1,1;1,2} \right)}\end{array}}\end{array}}\end{array};{y_{28}},...,{y_{51}} \in \begin{array}{*{20}{l}}{\;\left[ {1,2;1,3} \right)}\end{array};{y_{52}},...,{y_{65}} \in \begin{array}{*{20}{l}}{\;\left[ {1,3;1,4} \right)}\end{array}\)
Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{y_{16}} + {y_{17}}} \right)\).
Ta có: \(n = 65;{n_m} = 14;C = 13;{u_m} = 1,1;{u_{m + 1}} = 1,2\)
Do \({y_{16}},{y_{17}} \in \begin{array}{*{20}{c}}{\left[ {1,1;1,2} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:
\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,1 + \frac{{\frac{{65}}{4} - 13}}{{14}}.\left( {1,2 - 1,1} \right) \approx 1,12\)
Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{y_{49}} + {y_{50}}} \right)\).
Ta có: \(n = 65;{n_j} = 24;C = 13 + 14 = 27;{u_j} = 1,2;{u_{j + 1}} = 1,3\)
Do \({y_{49}},{y_{50}} \in \begin{array}{*{20}{c}}{\left[ {1,2;1,3} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:
\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 1,2 + \frac{{\frac{{3.65}}{4} - 27}}{{24}}.\left( {1,3 - 1,2} \right) \approx 1,29\)