Giải mục 4 trang 10, 11 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:43:26

Hoạt động 4

Ta biết rằng, \(\sqrt 2 \) là một số vô tỉ có thể biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn: \(\sqrt 2  = 1,414213562...\)

Cũng có thể coi \(\sqrt 2 \) là giới hạn của dãy số hữu tỉ \(\left( {{r_n}} \right)\):

\(1,4;1,41;1,414;1,4142;...\)

Từ đây, ta lập dãy số các luỹ thừa \(\left( {{3^{{r_n}}}} \right)\).

a) Bảng dưới cho biết những số hạng đầu tiên của dãy số \(\left( {{3^{{r_n}}}} \right)\) (làm tròn đến chữ số thập phân thứ chín). Sử dụng máy tính cầm tay, hãy tính số hạng thứ 6 và thứ 7 của dãy số này.

 

b) Nêu nhận xét về dãy số \(\left( {{3^{{r_n}}}} \right)\).

Phương pháp giải:

Sử dụng máy tính cầm tay để tính.

Lời giải chi tiết:

a) \({r_6} = {3^{1,414213}} = 4,728801466;{r_7} = {3^{1,4142134}} = 4,728803544\).

b) Ta thấy khi \(n \to  + \infty \) thì \({3^{{r_n}}} \to {3^{\sqrt 2 }}\).


Thực hành 5

Sử dụng máy tính cầm tay, tính các luỹ thừa sau đây (làm tròn đến chữ số thập phân thứ sáu):

a) \(1,{2^{1,5}}\);                  

b) \({10^{\sqrt 3 }}\);              

c) \({\left( {0,5} \right)^{ - \frac{2}{3}}}\).

Phương pháp giải:

Sử dụng máy tính cầm tay.

Lời giải chi tiết:

Để làm tròn đến chữ số thập phân thứ 6:

a, 

b,

c,

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"