Hoạt động 2
Một thùng gỗ hình lập phương có độ dài cạnh \(a\left( {dm} \right)\). Kí hiệu \(S\) và \(V\) lần lượt là diện tích một mặt và thể tích của thùng gỗ này.
a) Tính \(S\) và \(V\) khi \(a = 1{\rm{ }}dm\) và khi \(a = 3{\rm{ }}dm\).
b) \(a\) bằng bao nhiêu để \(S = 25{\rm{ }}d{m^2}\)?
c) \(a\) bằng bao nhiêu để \(V = 64{\rm{ }}d{m^3}\)?
Phương pháp giải:
Sử dụng công thức tính diện tích hình vuông và thể tích hình lập phương.
Lời giải chi tiết:
a) Khi \(a = 1{\rm{ }}dm\)
\(S = {a^2} = {1^2} = 1\left( {d{m^2}} \right);V = {a^3} = {1^3} = 1\left( {d{m^3}} \right)\)
Khi \(a = 3{\rm{ }}dm\)
\(S = {a^2} = {3^2} = 9\left( {d{m^2}} \right);V = {a^3} = {3^3} = 27\left( {d{m^3}} \right)\)
Thực hành 2
Tính giá trị các biểu thức sau:
a) \(\sqrt[4]{{\frac{1}{{16}}}}\);
b) \({\left( {\sqrt[6]{8}} \right)^2}\);
c) \(\sqrt[4]{3}.\sqrt[4]{{27}}\).
Phương pháp giải:
Sử dụng các tính chất của căn bậc \(n\).
Lời giải chi tiết:
a) \(\sqrt[4]{{\frac{1}{{16}}}} = \sqrt[4]{{{{\left( {\frac{1}{2}} \right)}^4}}} = \left| {\frac{1}{2}} \right| = \frac{1}{2}\)
b) \({\left( {\sqrt[6]{8}} \right)^2} = \sqrt[6]{{{8^2}}} = \sqrt[6]{{{{\left( {{2^3}} \right)}^2}}} = \sqrt[6]{{{2^6}}} = \left| 2 \right| = 2\)
c) \(\sqrt[4]{3}.\sqrt[4]{{27}} = \sqrt[4]{3}.\sqrt[4]{{{3^3}}} = \sqrt[4]{{{{3.3}^3}}} = \sqrt[4]{{{3^4}}} = \left| 3 \right| = 3\).