Giải mục 2 trang 7, 8, 9 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:43:27

Hoạt động 2

Một thùng gỗ hình lập phương có độ dài cạnh \(a\left( {dm} \right)\). Kí hiệu \(S\) và \(V\) lần lượt là diện tích một mặt và thể tích của thùng gỗ này.

a) Tính \(S\) và \(V\) khi \(a = 1{\rm{ }}dm\) và khi \(a = 3{\rm{ }}dm\).

b) \(a\) bằng bao nhiêu để \(S = 25{\rm{ }}d{m^2}\)?

c) \(a\) bằng bao nhiêu để \(V = 64{\rm{ }}d{m^3}\)?

Phương pháp giải:

Sử dụng công thức tính diện tích hình vuông và thể tích hình lập phương.

Lời giải chi tiết:

a) Khi \(a = 1{\rm{ }}dm\)

\(S = {a^2} = {1^2} = 1\left( {d{m^2}} \right);V = {a^3} = {1^3} = 1\left( {d{m^3}} \right)\)

Khi \(a = 3{\rm{ }}dm\)

\(S = {a^2} = {3^2} = 9\left( {d{m^2}} \right);V = {a^3} = {3^3} = 27\left( {d{m^3}} \right)\)


Thực hành 2

Tính giá trị các biểu thức sau:

a) \(\sqrt[4]{{\frac{1}{{16}}}}\);  

b) \({\left( {\sqrt[6]{8}} \right)^2}\);         

c) \(\sqrt[4]{3}.\sqrt[4]{{27}}\).

Phương pháp giải:

Sử dụng các tính chất của căn bậc \(n\).

Lời giải chi tiết:

a) \(\sqrt[4]{{\frac{1}{{16}}}} = \sqrt[4]{{{{\left( {\frac{1}{2}} \right)}^4}}} = \left| {\frac{1}{2}} \right| = \frac{1}{2}\)

b) \({\left( {\sqrt[6]{8}} \right)^2} = \sqrt[6]{{{8^2}}} = \sqrt[6]{{{{\left( {{2^3}} \right)}^2}}} = \sqrt[6]{{{2^6}}} = \left| 2 \right| = 2\)

c) \(\sqrt[4]{3}.\sqrt[4]{{27}} = \sqrt[4]{3}.\sqrt[4]{{{3^3}}} = \sqrt[4]{{{{3.3}^3}}} = \sqrt[4]{{{3^4}}} = \left| 3 \right| = 3\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"