Bài 5 trang 25 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:43:35

Đề bài

So sánh các cặp số sau:

a) \({\log _\pi }0,8\) và \({\log _\pi }1,2\);

b) \({\log _{0,3}}2\) và \({\log _{0,3}}2,1\);

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của hàm số lôgarit.

Lời giải chi tiết

a) Hàm số \(y = {\log _\pi }x\) có cơ số \(\pi  > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).

Mà \(0,8 < 1,2\) nên \({\log _\pi }0,8 < {\log _\pi }1,2\). Vậy \({\log _{\sqrt 5 }}2 > {\log _5}2\sqrt 2 \)

b) Hàm số \(y = {\log _{0,3}}x\) có cơ số \(0,3 < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).

Mà \(2 < 2,1\) nên \({\log _{0,3}}2 > {\log _{0,3}}2,1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"