Lý thuyết Hàm số mũ. Hàm số lôgarit - Toán 11 Chân trời sáng tạo

2024-09-14 12:43:48

1. Hàm số mũ

- Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) được gọi là hàm số mũ cơ số a.

- Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có:

+ Tập xác định: \(D = \mathbb{R}\).

+ Tập giá trị: \(T = \left( {0; + \infty } \right)\).

+ Hàm số liên tục trên \(\mathbb{R}\).

+ Sự biến thiên:

  • Nếu a > 1 thì hàm số đồng biến trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = 0\).
  • Nếu 0 < a < 1 thì hàm số nghịch biến trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to  + \infty } y = 0;\mathop {\lim }\limits_{x \to  - \infty } y =  + \infty \).

+ Đồ thị:

  • Cắt trục tung tại điểm (0; 1), đi qua điểm (1; a).
  • Nằm phía trên trục hoành.

2. Hàm số lôgarit

- Hàm số \(y = {\log _a}x\left( {a > 0;a \ne 1} \right)\) được gọi là hàm số lôgarit cơ số a.

- Hàm số \(y = {\log _a}x\left( {a > 0;a \ne 1} \right)\) có:

+ Tập xác định: \(D = \left( {0; + \infty } \right)\).

+ Tập giá trị: \(T = \mathbb{R}\).

+ Hàm số liên tục trên \(\left( {0; + \infty } \right)\).

+ Sự biến thiên:

  • Nếu a > 1 thì hàm số đồng biến trên \(\left( {0; + \infty } \right)\) và \(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ;\mathop {\lim }\limits_{x \to {0^ + }} y = 0\).
  • Nếu 0 < a < 1 thì hàm số nghịch biến trên \(\left( {0; + \infty } \right)\) và \(\mathop {\lim }\limits_{x \to  + \infty } y =  - \infty ;\mathop {\lim }\limits_{x \to {0^ + }} y =  + \infty \).

+ Đồ thị:

  • Cắt trục hoành tại điểm (1; 0), đi qua điểm (a; 1).
  • Nằm phía phải trục tung.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"