Bài 15 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:43:55

Đề bài

Giải các phương trình sau:

a) \({\left( {\frac{1}{4}} \right)^{x - 2}} = \sqrt 8 \);

b) \({9^{2x - 1}} = {81.27^x}\);

c) \(2{\log _5}\left( {x - 2} \right) = {\log _5}9\);

d) \({\log _2}\left( {3{\rm{x}} + 1} \right) = 2 - {\log _2}\left( {x - 1} \right)\).

Phương pháp giải - Xem chi tiết

Đưa 2 vế của phương trình về cùng cơ số.

Lời giải chi tiết

a)

\(\begin{array}{l}{\left( {\frac{1}{4}} \right)^{x - 2}} = \sqrt 8  \Leftrightarrow {\left( {{{\left( {\frac{1}{2}} \right)}^2}} \right)^{x - 2}} = {\left( {{{\left( {\frac{1}{2}} \right)}^{ - 3}}} \right)^{\frac{1}{2}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{2x - 4}} = {\left( {\frac{1}{2}} \right)^{ - \frac{3}{2}}}\\ \Leftrightarrow 2x - 4 =  - \frac{3}{2} \Leftrightarrow 2{\rm{x}} = \frac{5}{2} \Leftrightarrow {\rm{x}} = \frac{5}{4}\end{array}\)

b) \({9^{2x - 1}} = {81.27^x} \Leftrightarrow {\left( {{3^2}} \right)^{2x - 1}} = {3^4}.{\left( {{3^3}} \right)^x} \Leftrightarrow {3^{4{\rm{x}} - 2}} = {3^{4 + 3{\rm{x}}}} \Leftrightarrow 4{\rm{x}} - 2 = 4 + 3{\rm{x}} \Leftrightarrow x = 6\).

c) \(2{\log _5}\left( {x - 2} \right) = {\log _5}9\)

ĐKXĐ: \(x - 2 > 0 \Leftrightarrow x > 2\)

\(PT \Leftrightarrow {\log _5}{\left( {x - 2} \right)^2} = {\log _5}{3^2} \Leftrightarrow {\left( {x - 2} \right)^2} = {3^2} \Leftrightarrow \left[ \begin{array}{l}x - 2 = 3\\x - 2 =  - 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5 (TMĐK) \\x =  - 1 (Loại) \end{array} \right.\)

Vậy phương trình có nghiệm là \(x = 5\).

d) \({\log _2}\left( {3{\rm{x}} + 1} \right) = 2 - {\log _2}\left( {x - 1} \right)\).

ĐKXĐ: \(\left\{ \begin{array}{l}3{\rm{x}} + 1 > 0\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - \frac{1}{3}\\x > 1\end{array} \right. \Leftrightarrow x > 1\)

\(\begin{array}{l}PT \Leftrightarrow {\log _2}\left( {3{\rm{x}} + 1} \right) + {\log _2}\left( {x - 1} \right) = 2 \Leftrightarrow {\log _2}\left( {3{\rm{x}} + 1} \right)\left( {x - 1} \right) = {\log _2}{2^2}\\ \Leftrightarrow \left( {3{\rm{x}} + 1} \right)\left( {x - 1} \right) = 4 \Leftrightarrow 3{{\rm{x}}^2} + x - 3{\rm{x}} - 1 = 4 \Leftrightarrow 3{{\rm{x}}^2} - 2{\rm{x}} - 5 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1 (Loại) \\x = \frac{5}{3} (TMĐK)\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm là \(x = \frac{5}{3}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"