Bài 5 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:43:57

Đề bài

Cho \(\alpha ,\beta \) là hai số thực với \(\alpha  < \beta \). Khẳng định nào sau đây đúng?

A. \({\left( {0,3} \right)^\alpha } < {\left( {0,3} \right)^\beta }\).                 

B. \({\pi ^\alpha } \ge {\pi ^\beta }\).                                

C. \({\left( {\sqrt 2 } \right)^\alpha } < {\left( {\sqrt 2 } \right)^\beta }\).    

D. \({\left( {\frac{1}{2}} \right)^\beta } > {\left( {\frac{1}{2}} \right)^\alpha }\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của hàm số mũ.

Lời giải chi tiết

A. Do \(0 < 0,3 < 1\) nên hàm số \(y = 0,{3^x}\) nghịch biến trên \(\mathbb{R}\).

Mà \(\alpha  < \beta \) nên \({\left( {0,3} \right)^\alpha } > {\left( {0,3} \right)^\beta }\).

B. Do \(\pi  > 1\) nên hàm số \(y = {\pi ^x}\) đồng biến trên \(\mathbb{R}\).

Mà \(\alpha  < \beta \) nên \({\pi ^\alpha } < {\pi ^\beta }\).

C. Do \(\sqrt 2  > 1\) nên hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) đồng biến trên \(\mathbb{R}\).

Mà \(\alpha  < \beta \) nên \({\left( {\sqrt 2 } \right)^\alpha } < {\left( {\sqrt 2 } \right)^\beta }\).

D. Do \(0 < \frac{1}{2} < 1\) nên hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).

Mà \(\alpha  < \beta \) nên \({\left( {\frac{1}{2}} \right)^\alpha } > {\left( {\frac{1}{2}} \right)^\beta } \Leftrightarrow {\left( {\frac{1}{2}} \right)^\beta } < {\left( {\frac{1}{2}} \right)^\alpha }\).

Chọn C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"