Giải mục 6 trang 46, 47 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:44:05

Hoạt động 6

Cho hàm số \(u = \sin x\) và hàm số \(y = {u^2}\).

a) Tính \(y\) theo \(x\).

b) Tính \(y{'_x}\) (đạo hàm của \(y\) theo biến \(x\)), \(y{'_u}\) (đạo hàm của \(y\) theo biến \(u\)) và \(u{'_x}\) (đạo hàm của \(u\) theo biến \(x\)) rồi so sánh \(y{'_x}\) với \(y{'_u}.u{'_x}\).

Phương pháp giải:

a) Thay \(u = \sin x\) vào \(y\).

b) Sử dụng công thức tính đạo hàm: \({\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}};{\left( {\sin x} \right)^\prime } = \cos x\).

Lời giải chi tiết:

a) \(y = {u^2} = {\left( {\sin x} \right)^2} = {\sin ^2}x\).

b) Ta có:

\(\begin{array}{l}y{'_x} = {\left( {\sin x.\sin x} \right)^\prime } = {\left( {\sin x} \right)^\prime }.\sin x + \sin x.{\left( {\sin x} \right)^\prime } = \cos x.\sin x + \sin x.\cos x = 2\sin x\cos x\\y{'_u} = {\left( {{u^2}} \right)^\prime } = 2u\\u{'_x} = {\left( {\sin x} \right)^\prime } = \cos x\\ \Rightarrow y{'_u}.u{'_x} = 2u.\cos x = 2\sin x\cos x\end{array}\)

Vậy \(y{'_x} = y{'_u}.u{'_x}\).


Thực hành 7

Tính đạo hàm của các hàm số sau:

a) \(y = {\left( {2{x^3} + 3} \right)^2}\);                                  

b) \(y = \cos 3x\);         

c) \(y = {\log _2}\left( {{x^2} + 2} \right)\).

Phương pháp giải:

Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\).

Lời giải chi tiết:

a) Đặt \(u = 2{{\rm{x}}^3} + 3\) thì \(y = {u^2}\). Ta có: \(u{'_x} = {\left( {2{{\rm{x}}^3} + 3} \right)^\prime } = 6{{\rm{x}}^2}\) và \(y{'_u} = {\left( {{u^2}} \right)^\prime } = 2u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 2u.6{{\rm{x}}^2} = 2\left( {2{{\rm{x}}^3} + 3} \right).6{{\rm{x}}^2} = 12{{\rm{x}}^2}\left( {2{{\rm{x}}^3} + 3} \right)\).

Vậy \(y' = 12{{\rm{x}}^2}\left( {2{{\rm{x}}^3} + 3} \right)\).

b) Đặt \(u = 3{\rm{x}}\) thì \(y = \cos u\). Ta có: \(u{'_x} = {\left( {3{\rm{x}}} \right)^\prime } = 3\) và \(y{'_u} = {\left( {\cos u} \right)^\prime } =  - \sin u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} =  - \sin u.3 =  - 3\sin 3{\rm{x}}\).

Vậy \(y' =  - 3\sin 3{\rm{x}}\).

c) Đặt \(u = {x^2} + 2\) thì \(y = {\log _2}u\). Ta có: \(u{'_x} = {\left( {{x^2} + 2} \right)^\prime } = 2{\rm{x}}\) và \(y{'_u} = {\left( {{{\log }_2}u} \right)^\prime } = \frac{1}{{u\ln 2}}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = \frac{1}{{u\ln 2}}.2 = \frac{1}{{\left( {{x^2} + 2} \right)\ln 2}}.2 = \frac{2}{{\left( {{x^2} + 2} \right)\ln 2}}\).

Vậy \(y' = \frac{2}{{\left( {{x^2} + 2} \right)\ln 2}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"