Giải mục 5 trang 45, 46 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:44:05

Hoạt động 5

Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\).

Ta có \(\frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\)

nên \(h'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = ... + ...\)

Chọn biểu thức thích hợp thay cho chỗ chấm để tìm \(h'\left( {{x_0}} \right)\).

Phương pháp giải:

Sử dụng định nghĩa đạo hàm: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).


Thực hành 6

Tính đạo hàm của các hàm số sau:

a) \(y = x{\log _2}x\);                                    

b) \(y = {x^3}{e^x}\).

Phương pháp giải:

Sử dụng công thức \({\left( {u.v} \right)^\prime } = u'v + uv'\).

Lời giải chi tiết:

a) \(y' = {\left( {x{{\log }_2}x} \right)^\prime } = {\left( x \right)^\prime }{\log _2}x + x{\left( {{{\log }_2}x} \right)^\prime } = {\log _2}x + x.\frac{1}{{x\ln 2}} = {\log _2}x + \frac{1}{{\ln 2}}\).

b) \(y' = {\left( {{x^3}{e^x}} \right)^\prime } = {\left( {{x^3}} \right)^\prime }{e^x} + {x^3}{\left( {{e^x}} \right)^\prime } = 3{{\rm{x}}^2}{e^x} + {x^3}{e^x}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"