Giải mục 1 trang 42, 43 SGK Toán 11 tập 2 - Chân trời sáng tạo

2024-09-14 12:44:06

Hoạt động 1

a) Dùng định nghĩa tỉnh đạo hàm của hàm số \(y = x\) tại điểm \(x = {x_0}\).

b) Nhắc lại đạo hàm của các hàm số \(y = {x^2},y = {x^3}\) đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số \(y = {x^n}\) với \(n \in {\mathbb{N}^*}\).

Phương pháp giải:

Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

Lời giải chi tiết:

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)


Thực hành 1

Tính đạo hàm của hảm số \(y = {x^{10}}\) tại \(x =  - 1\) và \(x = \sqrt[3]{2}\).

Phương pháp giải:

Áp dụng công thức \({\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\).

Lời giải chi tiết:

Ta có: \({\left( {{x^{10}}} \right)^\prime } = 10{{\rm{x}}^9}\)

Từ đó: \(y'\left( { - 1} \right) = 10.{\left( { - 1} \right)^9} =  - 10\) và \(y'\left( {\sqrt[3]{2}} \right) = 10.{\left( {\sqrt[3]{2}} \right)^9} = 80\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"