Bài 5 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo

2024-09-14 12:44:14

Đề bài

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(BC\) và \(A{\rm{D}}\). Biết \(AB = CD = 2a\) và \(MN = a\sqrt 3 \). Tính góc giữa \(AB\) và \(C{\rm{D}}\).

Phương pháp giải - Xem chi tiết

Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):

Bước 1: Lấy một điểm \(O\) bất kì.

Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).

Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).

Lời giải chi tiết

 

Gọi \(P\) là trung điểm của \(AC\).

Ta có: \(M\) là trung điểm của \(BC\)

\(P\) là trung điểm của \(AC\)

\( \Rightarrow MP\) là đường trung bình của tam giác \(ABC\)

\( \Rightarrow MP\parallel AB,MP = \frac{1}{2}AB = a\)

\(N\) là trung điểm của \(A{\rm{D}}\)

\(P\) là trung điểm của \(AC\)

\( \Rightarrow NP\) là đường trung bình của tam giác \(AC{\rm{D}}\)

\( \Rightarrow NP\parallel C{\rm{D}},NP = \frac{1}{2}C{\rm{D}} = a\)

Ta có: \(MP\parallel AB,NP\parallel C{\rm{D}} \Rightarrow \left( {AB,C{\rm{D}}} \right) = \left( {MP,NP} \right)\)

Xét tam giác \(MNP\) có:

\(\cos \widehat {MPN} = \frac{{M{P^2} + N{P^2} - M{N^2}}}{{2.MP.NP}} =  - \frac{1}{2} \Rightarrow \widehat {MPN} = {120^ \circ }\)

Vậy \(\left( {AB,C{\rm{D}}} \right) = {180^ \circ } - \widehat {MPN} = {60^ \circ }\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"