Bài 1 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo

2024-09-14 12:44:22

Đề bài

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\). Cho biết \(ABCD\) là hình thang vuông tại \(A\) và \({\rm{D}}\), \(AB = 2AD\).

a) Chứng minh \(CD \bot \left( {SAD} \right)\).

b) Gọi \(M\) là trung điểm của \(AB\). Chứng minh \(CM \bot \left( {SAB} \right)\).

Phương pháp giải - Xem chi tiết

Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

Lời giải chi tiết

 

a) Ta có:

\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot C{\rm{D}}\\AB \bot C{\rm{D}}\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {SA{\rm{D}}} \right)\)

b) Ta có:

\(\left. \begin{array}{l}AB\parallel C{\rm{D}} \Rightarrow AM\parallel C{\rm{D}}\\AM = C{\rm{D}}\left( { = \frac{1}{2}AB} \right)\end{array} \right\}\)

\( \Rightarrow AMC{\rm{D}}\) là hình bình hành

Lại có: \(\widehat {MAD} = {90^ \circ }\)

Vậy \(AMC{\rm{D}}\) là hình chữ nhật

\(\left. \begin{array}{l} \Rightarrow CM \bot AB\\SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CM\end{array} \right\} \Rightarrow CM \bot \left( {SAB} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"