Đề bài
Thể tích của khối chóp cụt tam giác đều có cạnh đáy lớn bằng \(2a\), cạnh đáy nhỏ bằng \(a\) và chiều cao bằng \(\frac{{a\sqrt 6 }}{3}\) là
A. \(\frac{{7\sqrt 2 }}{8}{a^3}\).
B. \(\frac{{\sqrt 2 }}{4}{a^3}\).
C. \(\frac{{7\sqrt 2 }}{{12}}{a^3}\).
D. \(\frac{{7\sqrt 3 }}{4}{a^3}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\).
Lời giải chi tiết
Diện tích đáy lớn là: \(S = \frac{{{{\left( {2{\rm{a}}} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)
Diện tích đáy bé là: \(S' = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích của bồn chứa là: \(V = \frac{1}{3}.\frac{{a\sqrt 6 }}{3}\left( {{a^2}\sqrt 3 + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}} + \frac{{{a^2}\sqrt 3 }}{4}} \right) = \frac{{7\sqrt 2 }}{{12}}{a^3}\)
Chọn C.