Bài 3 trang 20 SGK Toán 11 tập 1 - Cánh diều

2024-09-14 12:45:51

Đề bài

Cho \(\tan \left( {a + b} \right) = 3,\,\tan \left( {a - b} \right) = 2\).

Tính: \(\tan 2a,\,\,\tan 2b\)

Phương pháp giải - Xem chi tiết

Dựa vào công thức cộng và công thức nhân đôi để tính:

\(\tan (x+y) = \frac{\tan x + \tan y}{{1 - \tan x.\tan y}}\)

\(\tan (x-y) = \frac{{\tan x - y}}{{1 + \tan x.\tan y}}\)

Lời giải chi tiết

Ta có:

\(\begin{array}{l}2a = \left( {a + b} \right) + \left( {a - b} \right) \Rightarrow \tan 2a = \tan \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right]\\2b = \left( {a + b} \right) - \left( {a - b} \right) \Rightarrow \tan 2b = \tan \left[ {\left( {a + b} \right) - \left( {a - b} \right)} \right]\end{array}\)

\(\begin{array}{l}\tan \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right] = \frac{{\tan \left( {a + b} \right) + \tan \left( {a - b} \right)}}{{1 - \tan \left( {a + b} \right).\tan \left( {a - b} \right)}} = \frac{{3 + 2}}{{1 - 3.2}} =  - 1\\\tan \left[ {\left( {a + b} \right) - \left( {a - b} \right)} \right] = \frac{{\tan \left( {a + b} \right) - \tan \left( {a - b} \right)}}{{1 + \tan \left( {a + b} \right).\tan \left( {a - b} \right)}} = \frac{{3 - 2}}{{1 + 3.2}} = \frac{1}{7}\end{array}\)

Vậy \(\tan 2a =  - 1,\,\,\,\tan 2b = \frac{1}{7}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"