Bài 1 trang 40 SGK Toán 11 tập 1 - Cánh diều

2024-09-14 12:46:20

Đề bài

Giải phương trình:

a)     \(\sin \left( {2x - \frac{\pi }{3}} \right) =  - \frac{{\sqrt 3 }}{2}\)

b)     \(\sin \left( {3x + \frac{\pi }{4}} \right) =  - \frac{1}{2}\)

c)     \(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\)

d)     \(2\cos 3x + 5 = 3\)

e)     \(3\tan x =  - \sqrt 3 \)

g)      \(\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\)

Phương pháp giải - Xem chi tiết

Dựa vào kiến thức giải phương trình để làm bài

Lời giải chi tiết

a)     \(\sin \left( {2x - \frac{\pi }{3}} \right) =  - \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{3} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{5\pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{5\pi }}{6} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy phương trình có nghiệm là: \(x \in \left\{ {k\pi ;\frac{{5\pi }}{6} + k\pi } \right\}\)

b)     \(\sin \left( {3x + \frac{\pi }{4}} \right) =  - \frac{1}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{4} =  - \frac{\pi }{6} + k2\pi \\3x + \frac{\pi }{4} = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{{5\pi }}{{12}} + k2\pi \\3x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{{5\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{11\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

c)     \(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} =  - \frac{\pi }{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} =  - \frac{\pi }{{12}} + k2\pi \\\frac{x}{2} =  - \frac{{5\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{6} + k4\pi \\x =  - \frac{{5\pi }}{6} + k4\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

d)     \(2\cos 3x + 5 = 3\)

\(\begin{array}{l} \Leftrightarrow \cos 3x =  - 1\\ \Leftrightarrow \left[ \begin{array}{l}3x = \pi  + k2\pi \\3x =  - \pi  + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = \frac{{ - \pi }}{3} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

e)      

\(\begin{array}{l}3\tan x =  - \sqrt 3 \\ \Leftrightarrow \tan x = \frac{{ - \sqrt 3 }}{3}\\ \Leftrightarrow \tan x = \tan \left( { - \frac{\pi }{6}} \right)\\ \Leftrightarrow x =  - \frac{\pi }{6} + k\pi \end{array}\)

g)

\(\begin{array}{l}\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\\ \Leftrightarrow \cot x - 3 = \sqrt 3  - \sqrt 3 \cot x\\ \Leftrightarrow \cot x + \sqrt 3 \cot x = \sqrt 3  + 3\\ \Leftrightarrow (1 + \sqrt 3 )\cot x = \sqrt 3  + 3\\ \Leftrightarrow \cot x = \sqrt 3 \\ \Leftrightarrow \cot x = \cot \frac{\pi }{6}\\ \Leftrightarrow x = \frac{\pi }{6} + k\pi \end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"