HĐ 4
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2}\). Tính \({u_{n + 1}}\). Từ đó hãy so sánh \({u_{n + 1}}\) và \({u_n}\) với mọi \(n \in \mathbb{N}*\)
Phương pháp giải:
Dựa vào phương pháp truy hồi để xác định
Lời giải chi tiết:
Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)
Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)
LT - VD 4
Chứng minh rằng dãy số \((v_n)\) với \(v_n = \frac{1}{3^x}\) là một dãy số giảm.
Phương pháp giải:
Chứng minh dựa vào khái niệm dãy số tăng, giảm
Lời giải chi tiết:
Ta có: \(v_{n+1}=\frac{1}{3^{n+1}}\)
Xét hiệu \(v_{n+1}-v_n=\frac{1}{3^{n+1}}-\frac{1}{3^n}=-\frac{2}{3}.\frac{1}{3^n} < 0\)
Suy ra \(v_{n+1} < v_n\).
Vậy dãy số giảm.