Lý thuyết Dãy số - SGK Toán 11 Cánh Diều

2024-09-14 12:46:34

I. Khái niệm

  • Dãy số hữu hạn

Mỗi hàm số u: \(\left\{ {1;2;3;...;m} \right\} \to \mathbb{R}\left( {m \in {\mathbb{N}^*}} \right)\) được gọi là một dãy số hữu hạn.

Do mỗi số nguyên dương \(k\left( {1 \le k \le m} \right)\) tương ứng với đúng một số \({u_k}\) nên ta có thể viết dãy số đó dưới dạng khai triển: \({u_1},{u_2},{u_3},...,{u_m}\)

Số \({u_1}\) là số hạng đầu; \({u_m}\) là số hạng cuối cùng của dãy số đó.

  • Dãy số vô hạn

Mỗi hàm số u: \({\mathbb{N}^*} \to \mathbb{R}\) được gọi là một dãy số vô hạn.

Do mỗi số nguyên dương \(n\) tương ứng với đúng một số \({u_n}\) nên ta có thể viết dãy số đó dưới dạng khai triển: \({u_1},{u_2},{u_3},...,{u_n},...\)

Số \({u_1}\) là số hạng đầu; \({u_n}\) là số hạng thứ n và gọi là số hạng tổng quát của dãy số.

2. Cách cho một dãy số

Một dãy số có thể cho bằng:

  • Liệt kê các số hạng (chỉ dùng cho các dãy hữu hạn và có ít số hạng).
  • Công thức của số hạng tổng quát.
  • Diễn đạt bằng lời cách xác định mỗi số hạn tổng quát của dãy số đó.
  • Phương pháp truy hồi.

3. Dãy số tăng, dãy số giảm

  • Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu ta có \({u_{n + 1}} > {u_n}\)\(,\forall n \in {\mathbb{N}^*}\).
  • Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu ta có \({u_{n + 1}} < {u_n}\)\(,\forall n \in {\mathbb{N}^*}\).

4. Dãy số bị chặn

  • Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu \(\exists \) số M sao cho \({u_n} \le M,\) \(\forall n \in {\mathbb{N}^*}\).
  • Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu \(\exists \) số m sao cho \({u_n} \ge m,\) \(\forall n \in {\mathbb{N}^*}\).
  • Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho \(m \le {u_n} \le M,\)\(\forall n \in {\mathbb{N}^*}\).

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"