Bài 7 trang 52 SGK Toán 11 tập 1 - Cánh diều

2024-09-14 12:46:34

Đề bài

Chiều cao (đơn vị: centimet) của một đứa trẻ n tuổi phát triển bình thường được cho bởi công thức: \({x_n} = 75 + 5\left( {n - 1} \right)\)

a)    Một đứa trẻ phát triển bình thường có chiều cao năm 3 tuổi là bao nhiêu centimet?

b)    Dãy số \(\left( {{x_n}} \right)\) có là một cấp số cộng không? Trung bình một năm, chiều cao mỗi đứa trẻ phát triển bình thường tăng lên bao nhiêu centimet?

Phương pháp giải - Xem chi tiết

Dựa vào công thức để xác định

Lời giải chi tiết

a)    Một đứa trẻ phát triển bình thường có chiều cao năm 3 tuổi là:

\({x_3} = 75 + 5\left( {3 - 1} \right) = 85\,\,\left( {cm} \right)\)

b)    Dãy số \(\left( {{x_n}} \right)\) có là cấp số cộng

Trung bình một năm, chiều cao mỗi đứa trẻ phát triển bình thường tăng lên chính là công sai của cấp số cộng. Ta có:

\({x_n} = 75 + 5\left( {n - 1} \right) \Rightarrow \left\{ \begin{array}{l}{u_1} = 75\\d = 5\end{array} \right.\)

Vậy trung bình một năm, chiêu cao mỗi đứa trẻ phát triển bình thường tăng lên 5cm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"