Đề bài
Cho cấp số cộng \(\left( {{u_n}} \right)\). Tìm số hạng đầu \({u_1}\), công sai d trong mỗi trường hợp sau:
a) \({u_2} + {u_5} = 42\) và \({u_4} + {u_9} = 66\)
b) \({u_2} + {u_4} = 22\) và \({u_1}.{u_5} = 21\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức \(u_n=u_1+(n-1)d\)
Lời giải chi tiết
a, Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}{u_2}\; + {\rm{ }}{u_5}\; = {\rm{ }}42\\{u_4}\; + {\rm{ }}{u_9}\; = {\rm{ }}66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d\; + {\rm{ }}{u_1} + 4d\; = {\rm{ }}42\\{u_1} + 3d\; + {\rm{ }}{u_1} + 8d\;\; = {\rm{ }}66\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 5d\;\; = {\rm{ }}42\\2{u_1} + 11d\;\;\; = {\rm{ }}66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}\frac{{99}}{7}\\d\;\;\; = {\rm{ }}\frac{{24}}{7}\end{array} \right.\end{array}\)
b, Ta có: '
\(\begin{array}{l}\left\{ \begin{array}{l}\;{u_2}\; + {\rm{ }}{u_4}\; = {\rm{ }}22\\{u_1}.{u_5}\; = {\rm{ }}21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d\; + {\rm{ }}{u_1} + 3d\; = {\rm{ 2}}2\\{u_1}.\left( {{u_1} + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 4d\;\; = {\rm{ 2}}2\\{u_1}.\left( {{u_1} + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\\left( {11 - 2d} \right).\left( {11 - 2d + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\\left( {11 - 2d} \right).\left( {11 + 2d\;} \right)\; = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\{11^2} - {\left( {2d\;} \right)^2} = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\121 - 4{d^2} = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\d\; = \pm 5\end{array} \right.\end{array}\)
Với \(d = - 5 \Rightarrow {u_1} = 11 - 2.\left( { - 5} \right) = 21\)
Với \(d = 5 \Rightarrow {u_1} = 11 - 2.5 = 1\)