Giải mục 4 trang 63 SGK Toán 11 tập 1 - Cánh Diều

2024-09-14 12:46:48

HĐ 5

Quan sát dãy số \((u_n)\) với \(u_­n = n^2\) và cho biết giá trị của n có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.

Phương pháp giải:

Xác định các giá trị của dãy số dựa vào công thức tính số hạng tổng quát.

Lời giải chi tiết:

Ta có bảng giá trị sau:

n

1

2

3

...

100

...

1001

\(u_n\)

1

4

9

...

10 000

...

1 002 001

Từ đó ta có các nhận xét sau:

+) Kể từ số hạng thứ 2 trở đi thì \(u_n > 1\) .

+) Kể từ số hạng thứ 101 trở đi thì \(u_n > 10 000\).

...

Vậy ta thấy \(u_n\) có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.


LT - VD 7

Tính \(\lim \left( { - {n^3}} \right).\)

Phương pháp giải:

Sử dụng định nghĩa về dãy số có giới hạn vô cực.

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \) khi \(n \to  + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \) hay \({u_n} \to  + \infty \) khi \(n \to  + \infty \).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \) khi \(n \to  + \infty \) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left( { - {u_n}} \right) =  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  - \infty \) hay \({u_n} \to  - \infty \) khi \(n \to  + \infty \).

Lời giải chi tiết:

Xét dãy \(\left( {{u_n}} \right) = {n^3}\)

Với M là số dương bất kì, ta thấy \({u_n} > M \Leftrightarrow {n^3} > M \Leftrightarrow n > \sqrt[3]{M}.\)

Vậy với các số tự nhiên \(n > \sqrt[3]{M}\) thì \({u_n} > M.\) Do đó, \(\lim {n^3} =  + \infty  \Rightarrow \lim \left( { - {n^3}} \right) =  - \infty \)


LT - VD 8

Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)

Phương pháp giải:

Sử dụng lý thuyết một số giới hạn cơ bản: \(\lim \frac{1}{n} = 0;\lim \frac{1}{{{n^k}}} = 0\) với k là số nguyên dương cho trước.

Lời giải chi tiết:

\(\lim \frac{{n - 1}}{{{n^2}}} = \lim \left( {\frac{1}{n} - \frac{1}{{{n^2}}}} \right) = \lim \frac{1}{n} - \lim \frac{1}{{{n^2}}} = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"