Đề bài
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng (AFD) // (BEC)
b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính \(\frac{{AN}}{{NC}}\)
Phương pháp giải - Xem chi tiết
Nếu mặt phẳng (P) chứa hai đường thằng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q)
Lời giải chi tiết
a) Ta có: AD // BC (ABCD là hình bình hành)
mà AD thuộc (AFD), BC thuộc (BEC)
nên (AFD) // (BEC)
b) Trong (ABEF), kẻ đường thẳng d qua M // AF
Ta có: d cắt AB tại I, d cắt EF tại J (1)
Trong (ABCD) có I thuộc (P) mà (P) // (AFD)
Suy ra từ I kẻ IH // AD (2)
Từ (1) và (2) suy ra: (IJH) trùng (P) và // (AFD)
Ta có: (P) cắt AC tại N mà AC thuộc (ABCD), IH thuộc (P) và (ABCD)
Suy ra IH cắt AC tại N
Ta có các hình bình hành IBCH, IBEJ
Gọi O là trung điểm của AB
Ta có M là trọng tâm của tam giác ABE
Suy ra \(\frac{{MO}}{{ME}} = \frac{1}{2}\)
Ta có AB // CD suy ra AI // CH
Định lý Ta – let:\(\frac{{AN}}{{NC}} = \frac{{AI}}{{CH}}\)
Mà CH = IB (IBCH là hình bình hành)
Suy ra\(\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}}\)
Ta có: AB // EF nên OI // EJ
Do đó:\(\frac{{OI}}{{{\rm{EJ}}}} = \frac{{MO}}{{ME}} = \frac{1}{2}\)
Mà EJ = IB (IBEJ là hình bình hành)
Suy ra\(\frac{{OI}}{{IB}} = \frac{1}{2}\) hay\(IB = 2OI\)
Ta có\(\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}} = \frac{{AO + OI}}{{2OI}}\)
Mà OA = OB (O là trung điểm AB)
Nên \(\frac{{AN}}{{NC}} = \frac{{OB + OI}}{{2OI}} = 2\)
Do đó: \(\frac{{AN}}{{NC}} = 2\)