Bài 3 trang 109 SGK Toán 11 tập 1 - Cánh Diều

2024-09-14 12:47:46

Đề bài

Cho tứ diện ABCD. Lấy \({G_1},{G_2},{G_3}\)lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.

a) Chứng minh rằng \(({G_1}{G_2}{G_3})//(BCD)\)

b) Xác định giao tuyến của mặt phẳng \(({G_1}{G_2}{G_3})\) với mặt phẳng \((ABD)\)

Phương pháp giải - Xem chi tiết

Nếu mặt phẳng (P) chứa hai đường thằng cắt nhau a, ba, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q)

Lời giải chi tiết

a) Gọi E, F, H là trung điểm của BC, CD, BD

Ta có:\({G_1}\) là trọng tâm tam giác ABC, suy ra\(\frac{{A{G_1}}}{{AE}} = \frac{2}{3}\)

\({G_3}\)là trọng tâm tam giác ABD, suy ra\(\frac{{A{G_3}}}{{AH}} = \frac{2}{3}\)

Suy ra tam giác AEH có\(\frac{{A{G_1}}}{{AE}} = \frac{{A{G_3}}}{{AH}}\) nên \({G_1}{G_3}//EH\)

EH thuộc (BCD) nên \({G_1}{G_3}//(BCD)\)

Tương tự ta có:\({G_2}{G_3}//(BCD)\)

Do đó, \({G_1}{G_2}{G_3}//(BCD)\)

b) Ta có: \({G_1}{G_2}{G_3}//(BCD)\) nên \({G_1}{G_2} // BD\)

mà \({G_3}\) là điểm chung của hai mặt phẳng

Từ \({G_3}\) kẻ \({G_3}x\) sao cho \({G_3}x//BD\)

Vậy \({G_3}x\) là giao tuyến cấn tìm

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"