Bài 2 trang 113 SGK Toán 11 tập 1 - Cánh Diều

2024-09-14 12:47:57

Đề bài

Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA‘, C’D‘, AD‘. Chứng minh rằng:

a) NQ // A’D‘ và \(NQ = \frac{1}{2}A'D'\)

b) Tứ giác MNQC là hình bình hành

c) MN // (ACD‘)

d) (MNP) // (ACD‘)

Phương pháp giải - Xem chi tiết

- Hình tứ giác có các cặp cạnh song song là hình bình hành

- Nếu đường thẳng a không nằm trong mặt phẳng (P)a song song với đường thẳng a’ nằm trong (P) thì a song song với (P)

- Nếu mặt phẳng (P) chứa hai đường thằng cắt nhau a, ba, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q)

Lời giải chi tiết

a) Ta có: N là trung điểm của AA’ nên \(\frac{{AN}}{{AA'}} = \frac{1}{2}\)

Q là trung điểm của AD’ nên \(\frac{{AQ}}{{AD'}} = \frac{1}{2}\)

Theo định lý Ta – let, ta có NQ // A’D’

Suy ra \(\frac{{NQ}}{{A'D'}} = \frac{{AN}}{{AA'}} = \frac{1}{2}\) nên\(NQ = \frac{1}{2}A'D'\)

b) Ta có: NQ // A’D’A’D’ // BC nên NQ // BC hay NQ // MC (1)

Ta có \(NQ = \frac{1}{2}A'D'\) mà A’D’ = BC, \(MC = \frac{1}{2}BC\), nên NQ = MC (2)

Từ (1) và (2) suy ra MNQC là hình bình hành

c) Ta có: MNQC là hình bình hành nên MN // CQ

CQ thuộc (ACD’)

Nên MN // (ACD’)

d) Gọi O là trung điểm của AC

Tam giác ACB có: O, M là trung điểm của AC, BC

Suy ra: OM // AB nên \(OM = \frac{1}{2}AB\)

AB = C’D’, \(D'P = \frac{1}{2}C'D\),

Suy ra OM = D’P (1)

Ta có: OM // AB, AB // C’D’ nên OM // C’D‘ hay OM // D’P (2)

Từ (1) và (2) suy ra OMPD’ là hình bình hành. Do đó: MP // OD’

OD’ thuộc (ACD’)

Suy ra: MP // (ACD’)

MN thuộc (ACD’)

Do đó: (MNP) // (ACD’)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"