Bài 4 trang 24 SGK Toán 11 tập 2 – Cánh Diều

2024-09-14 12:48:33

Đề bài

Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng. Chọn ngẫu nhiên 5 viên bi từ hộp đó. Tính xác suất để trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng.

Phương pháp giải - Xem chi tiết

 Dùng quy tắc chỉnh hợp để tìm số phần tử của không gian mẫu và tập hợp cần tìm

Lời giải chi tiết

-         Số phần tử của không gian mẫu là: \(\Omega  = C_{12}^5 = 792\)

-         Số cách lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là:

+ Lấy 2 viên bi màu vàng và 3 viên màu xanh: \(C_5^2.C_7^3 = 350\)

+ Lấy 3 viên bi màu vàng và 2 viên màu xanh: \(\left( {C_5^3} \right).\left( {C_7^2} \right) = 210\)

+ Lấy 4 viên bi màu vàng và 1 viên màu xanh: \(\left( {C_5^4} \right).\left( {C_7^1} \right) = 35\)

+ Lấy 5 viên bi màu vàng: \(C_5^5 = 1\)

⇨     Tổng số cách lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là: \(350 + 210 + 35 + 1 = 596\)

-         Xác suất để lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là:\(P = \frac{{596}}{{792}} = \frac{{149}}{{198}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"