Giải mục 2 trang 30, 31 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:48:43

HĐ 5

Xét số vô tỉ: \(\sqrt 2  = 1,4142135624...\). Xét dãy số hữu tỉ: \({r_1} = 1;{r_2} = 1,4;{r_3} = 1,41;{r_4} = 1,414;{r_5} = 1,4142;{r_6} = 1,41421;...\) và \(\lim {r_n} = \sqrt 2 \). Bằng cách tính \({3^{{r_n}}}\) tương ứng, ta nhận được Bảng 1 ghi các dãy số \(\left( {{r_n}} \right)\) và \(\left( {{3^{{r_n}}}} \right)\) với n = 1, 2, …, 6. Người ta chứng minh được rằng khi \(n \to  + \infty \) thì dãy số \(\left( {{3^{{r_n}}}} \right)\) dần đến một giới hạn mà ta gọi là \({3^{\sqrt 2 }}\). Nêu dự đoán về giá trị của số \({3^{\sqrt 2 }}\) (đến hàng phần trăm).

Phương pháp giải:

Dựa vào giới hạn của dãy số hữu tỉ để dự đoán

Lời giải chi tiết:

Do \({r_1} = 1;{r_2} = 1,4;{r_3} = 1,41;{r_4} = 1,414;{r_5} = 1,4142;{r_6} = 1,41421;...\) => \({3^{\sqrt 2 }} \approx 1,41\)


LT 5

So sánh \({10^{\sqrt 2 }}\,\,và \,\,10\)

Phương pháp giải:

Dựa vào dự đoán ở ví dụ 5 để so sánh

Lời giải chi tiết:

Do \({10^{\sqrt 2 }} \approx 25,95 > 10 \Rightarrow {10^{\sqrt 2 }} > 10\)


HĐ 6

Nêu những tính chất của phép tính lũy thừa với số mũ nguyên của một số thực dương

Phương pháp giải:

Dựa vào các kiến thức đã học về lũy thừa ở cấp 2 để làm bài

Lời giải chi tiết:

+ \({a^\alpha }.{a^\beta } = {a^{\alpha  + \beta }}\)

+ \(\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha  - \beta }}\)

+ \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha .\beta }}\)

+ \({(ab)^\alpha } = {a^\alpha }.{b^\alpha }\)

+ \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)

+ Nếu a > 1 thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  < \beta \)

               + Nếu 0 < a < 1 thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  > \beta \)


LT 6

Không sử dụng máy tính cầm tay, hãy so sánh các số: \({2^{2\sqrt 3 }}\,\,và \,\,{2^{3\sqrt 2 }}\)

Phương pháp giải:

Dựa vào Ví dụ 7 để làm

Lời giải chi tiết:

Ta có:

\(\left. \begin{array}{l}{\left( {2\sqrt 3 } \right)^2} = 12\\{\left( {3\sqrt 2 } \right)^2} = 18\end{array} \right\} \Rightarrow 2\sqrt 3  < 3\sqrt 2  \Rightarrow {2^{2\sqrt 3 }} < {2^{3\sqrt 2 }}\)


LT 7

Dùng máy tính cầm tay để tính (làm tròn kết quả đến hàng phần trăm):

a) \( (-2,7)^{-4}\);

b) \( \sqrt 3 - 1)^{\sqrt[3] {4} + 1}\)

Phương pháp giải:

Sử dụng máy tính để tính, làm tròn đến hàng phần trăm.

Lời giải chi tiết:

a) \( (-2,7)^{-4} \approx 0,02\);

b) \( \sqrt 3 - 1)^{\sqrt[3] {4} + 1} \approx 0,45\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"