Lý thuyết Phép tính lôgarit - Toán 11 Cánh diều

2024-09-14 12:48:47

1. Khái niệm lôgarit

a) Định nghĩa

Với a > 0, a \( \ne \) 1 và b > 0, ta có: \(c = {\log _a}b \Leftrightarrow {a^c} = b\). Ngoài ra:

- Lôgarit thập phân của b là lôgarit cơ số 10 của số thực dương b:

\(c = \log b \Leftrightarrow {10^c} = b\)

- Lôgarit tự nhiên của b là lôgarit cơ số e của số thực dương b:

\(c = \ln b \Leftrightarrow {e^c} = b\).

b) Tính chất

Với a > 0, a \( \ne \) 1 và b > 0, ta có:

\({\log _a}1 = 0\); \({\log _a}a = 1\); \({\log _a}{a^c} = c\); \({a^{{{\log }_a}b}} = b\).

2. Một số tính chất của phép tính lôgarit

Trong mục này, ta xét a > 0, a \( \ne \) 1 và b > 0.

a) Lôgarit của một tích, một thương

Với m > 0, n > 0, ta có:

  • \({\log _a}\left( {mn} \right) = {\log _a}m + {\log _a}n\);
  • \({\log _a}\left( {\frac{m}{n}} \right) = {\log _a}m - {\log _a}n\).

Nhận xét: \({\log _a}\left( {\frac{1}{b}} \right) =  - {\log _a}b\).

b) Lôgarit của một lũy thừa

Với mọi số thực \(\alpha \), ta có: \({\log _a}{b^\alpha } = \alpha {\log _a}b\).

Nhận xét: Với mọi số nguyên dương \(n \ge 2\), ta có: \({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _a}b\).

c) Đổi cơ số của lôgarit

Với a, b là hai số thực dương khác 1 và c là số thực dương, ta có: \({\log _b}c = \frac{{{{\log }_a}c}}{{{{\log }_a}b}}\).

Nhận xét: Với a, b là hai số thực dương khác 1, c > 0 và \(\alpha  \ne 0\), ta có những công thức sau:

  • \({\log _a}b.{\log _b}c = {\log _a}c\);
  • \({\log _a}b = \frac{1}{{{{\log }_b}a}}\);
  • \({\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"