Giải mục 2 trang 51, 52, 53 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:49:05

HĐ 5

Quan sát Hình 11 và nêu nhận xét về tính đồng biến, nghịch biến của hàm số mũ \(y = {\left( {\frac{1}{2}} \right)^x}\). Từ đó, hãy tìm x sao cho \({\left( {\frac{1}{2}} \right)^x} > 2\)

Phương pháp giải:

Dựa vào nhìn đồ thị để xét tính đồng biến nghịch biến

Lời giải chi tiết:

-         Hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) nghịch biến trên toàn R

-         Dựa vào đồ thị ta thấy: \({\left( {\frac{1}{2}} \right)^x} > 2 \Leftrightarrow x >  - 1\)


LT 5

Cho hai ví dụ về bất phương trình mũ cơ bản

Phương pháp giải:

Dựa vào định nghĩa bất phương trình mũ để xác định

Lời giải chi tiết:

Ví dụ:

+ \({3^x} = 9\)

+ \({4^{x + 2}} = 16\)


LT 6

Giải mỗi bất phương trình sau:

a)    \({7^{x + 3}} < 343\)

b)    \({\left( {\frac{1}{4}} \right)^x} \ge 3\)

Phương pháp giải:

Dựa vào ví dụ 10 để làm

Lời giải chi tiết:

a)    \({7^{x + 3}} < 343\)

\(\begin{array}{l} \Leftrightarrow x + 3 < {\log _7}343\\ \Leftrightarrow x + 3 < 3\\ \Leftrightarrow x < 0\end{array}\)

Vậy tập nghiệm của bất phương trình là: \(\left( { - \infty ;0} \right)\)

b)    \({\left( {\frac{1}{4}} \right)^x} \ge 3\)

\( \Leftrightarrow x \le {\log _{\frac{1}{4}}}3\)

Vậy tập nghiệm của bất phương trình là: \(\left( { - \infty ;{{\log }_{\frac{1}{4}}}3} \right]\)


HĐ 6

Quan sát Hình 12 và nêu nhận xét về tính đồng biến, nghịch biến của hàm số lôgarit \(y = {\log _2}x\). Từ đó, hãy tìm x sao cho \({\log _2}x > 1\)

Phương pháp giải:

Dựa vào nhìn đồ thị để xét tính đồng biến nghịch biến

Lời giải chi tiết:

-         Hàm số \(y = {\log _2}x\) đồng biến trên tập xác định

-         Dựa vào đồ thị ta thấy: \({\log _2}x > 1 \Leftrightarrow x > 2\)


LT 7

Cho hai ví dụ về bất phương trình logarit cơ bản

Phương pháp giải:

Dựa vào định nghĩa để làm

Lời giải chi tiết:

  1. \(\log x > 1\)
  2. \({\log _3}\left( {x + 1} \right) < 6\)

LT 8

Giải mỗi bất phương trình sau:

a)    \({\log _3}x < 2\)

b)    \({\log _{\frac{1}{4}}}\left( {x - 5} \right) \ge  - 2\)

Phương pháp giải:

Dựa vào ví dụ 13 để làm

Lời giải chi tiết:

a)    \({\log _3}x < 2\)

\(\begin{array}{l} \Leftrightarrow 0 < x < {3^2}\\ \Leftrightarrow 0 < x < 9\end{array}\)

Vậy tập nghiệm của bất phương trình là (0 ; 9)

b)    \({\log _{\frac{1}{4}}}\left( {x - 5} \right) \ge  - 2\)

\(\begin{array}{l} \Leftrightarrow 0 < x - 5 \le {\left( {\frac{1}{4}} \right)^{ - 2}}\\ \Leftrightarrow 5 < x \le 21\end{array}\)

Vậy tập nghiệm của bất phương trình là \(\left( {5;21} \right]\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"