Giải mục 1 trang 48, 49, 50 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:49:06

Hoạt động 1

Trong bài toán ở phần mở đầu, giả sử r = 1,14%/năm

a)     Viết phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu

b)    Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lũy thừa?

Phương pháp giải:

Dựa vào công thức đã tìm được ở bài mở đầu rồi tính

Lời giải chi tiết:

a)     ­­­Phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là:

\(S = 2S.{e^{1,14.t}} \Leftrightarrow 2{e^{1,14t}} = 1 \Leftrightarrow {e^{1,14t}} = \frac{1}{2}\)

b)    Phương trình vừa tìm được có ẩn là t và nằm ở vị trí mũ của lũy thừa


Luyện tập – Vận dụng 1

Cho hai ví dụ về phương trình mũ

Phương pháp giải:

Dựa vào kiến thức vừa học để xác định phương trình mũ

Lời giải chi tiết:

2 ví dụ về phương trình mũ

  1. \({4^{x + 1}} = 2\)
  2. \({7^{2x}} = 49\)

Hoạt động 2

a)     Vẽ đồ thị hàm số \(y = {3^x}\) và đường thẳng y = 7

b)    Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình \({3^x} = 7\)

Phương pháp giải:

Dựa vào kiến thức đã học ở bài trước để vẽ đồ thị

Lời giải chi tiết:

a)     Ta có bảng sau:

Ta có đồ thị sau:

b,     Hai đồ thị \(y = {3^x}\) và y = 7 có 1 giao điểm. Vậy số nghiệm của phương trình \({3^x} = 7\) là 1


Luyện tập – Vận dụng 2

Giải mỗi phương trình sau:

a)    \({9^{16 - x}} = {27^{x + 4}}\)

b)    \({16^{x - 2}} = 0,{25.2^{ - x + 4}}\)

Phương pháp giải:

Dựa vào kiến thức vừa học về phương trình mũ để giải

Lời giải chi tiết:

a)    \({9^{16 - x}} = {27^{x + 4}}\)

\(\begin{array}{l} \Leftrightarrow {3^{2.\left( {16 - x} \right)}} = {3^{3.\left( {x + 4} \right)}}\\ \Leftrightarrow 2.\left( {16 - x} \right) = 3.\left( {x + 4} \right)\\ \Leftrightarrow 32 - 2x - 3x - 12 = 0\\ \Leftrightarrow  - 5x =  - 20\\ \Leftrightarrow x = 4\end{array}\)

b)    \({16^{x - 2}} = 0,{25.2^{ - x + 4}}\)

\(\begin{array}{l} \Leftrightarrow {2^{4\left( {x - 2} \right)}} = 0,{25.2^{ - x + 4}}\\ \Leftrightarrow {2^{4x - 8 + x - 4}} = 0,25\\ \Leftrightarrow {2^{5x - 12}} = 0,25\\ \Leftrightarrow 5x - 12 = {\log _2}0,25\\ \Leftrightarrow 5x - 12 =  - 2\\ \Leftrightarrow x = 2\end{array}\)


Hoạt động 3

Chỉ số hay độ pH của một dung dịch được tính theo công thức: \(pH =  - \log [{H^ + }]\) (Trong đó \([{H^ + }]\) chỉ nống độ hydrogen). Đo chỉ số pH của một mẫu nước sông, ta có kết quả là pH = 6,1.

a)     Viết phương trình thể hiện nồng độ x của ion hydrogen \([{H^ + }]\) trong mẫu nước sông đó.

b)    Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lôgarit?

Phương pháp giải:

Dựa vào công thức tính pH để biểu diễn

Lời giải chi tiết:

a)     Ta có: \( - \log [{H^ + }] = 6.1 \Leftrightarrow  - \log x = 6,1\)

b)    Phương trình vừa tìm được có ẩn là x và nằm ở vị trí hệ số của logarit


Luyện tập – Vận dụng 3

Cho hai ví dụ về phương trình logarit

Phương pháp giải:

Dựa vào dạng phương trình logarit vừa học để làm

Lời giải chi tiết:

  1. \({\log _2}\left( {x + 1} \right) = 8\)
  2. \({\log _3}\left( {{x^2} + x + 1} \right) = 2\)

Hoạt động 4

a)     Vẽ đồ thị hàm số \(y = {\log _4}x\) và đường thẳng y = 5

b)    Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình \({\log _4}x = 5\)

Phương pháp giải:

Dựa vào cách vẽ đồ thị ở bài trên để vẽ hàm

Lời giải chi tiết:

a)     Đồ thị hai hàm số:

b,     Hai hàm số có 1 giao điểm. Phương trình \({\log _4}x = 5\) có 1 nghiệm­


Luyện tập – Vận dụng 4

Giải mỗi phương trình sau:

a)    \({\log _5}\left( {2x - 4} \right) + {\log _{\frac{1}{5}}}\left( {x - 1} \right) = 0\)

b)    \({\log _2}x + {\log _4}x = 3\)

Phương pháp giải:

Dựa vào công thức vừa học để giải phương trình

Lời giải chi tiết:

a)    \({\log _5}\left( {2x - 4} \right) + {\log _{\frac{1}{5}}}\left( {x - 1} \right) = 0\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x > 2\\{\log _5}\left( {2x - 4} \right) - {\log _5}\left( {x - 1} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\{\log _5}\left( {\frac{{2x - 4}}{{x - 1}}} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\\frac{{2x - 4}}{{x - 1}} = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\2x - 4 = x - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\x = 3\end{array} \right.\\ \Leftrightarrow x = 3\end{array}\)

Vậy phương trình có nghiệm x = 3

b)    \({\log _2}x + {\log _4}x = 3\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{\log _2}x + {\log _2}{x^2} = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{\log _2}{x^3} = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{x^3} = {2^3}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x = 2\end{array} \right.\\ \Leftrightarrow x = 2\end{array}\)

Vậy phương trình có nghiệm x = 2

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"