Giải mục 1 trang 60 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:49:18

Hoạt động 1

Tính vận tốc tức thời của viên bi tại thời điểm \({x_0} = 1s\) trong bài toán tìm vận tốc tức thời

Phương pháp giải:

Dựa vào công thức đã cho ở bài toán tìm vận tốc để tính

Lời giải chi tiết:

\(\begin{array}{l}v({x_0}) = \mathop {\lim }\limits_{{x_1} \to {x_0}} \frac{{f({x_1}) - f({x_0})}}{{{x_1} - {x_0}}} = \mathop {\lim }\limits_{{x_1} \to 1} \frac{{f({x_1}) - f(1)}}{{{x_1} - 1}} = \mathop {\lim }\limits_{{x_1} \to 1} \frac{{\frac{1}{2}g{x_1} - \frac{1}{2}g}}{{{x_1} - 1}}\\ = \mathop {\lim }\limits_{{x_1} \to 1} \frac{{\frac{1}{2}g({x_1} - 1)}}{{{x_1} - 1}} = \frac{1}{2}g \approx \frac{1}{2}.9,8 \approx 4,9\,\,\,(m/s)\end{array}\)


Luyện tập – Vận dụng 1

Tính đạo hàm của hàm số \(f\left( x \right) = \frac{1}{x}\) tại \({x_0} = 2\) bằng định nghĩa

Phương pháp giải:

Dựa vào ví dụ 1 để làm

Lời giải chi tiết:

Xét \(\Delta x\) là số gia của biến số tại điểm x0 = 2.

Ta có:

$\begin{align} \Delta y=f\left( 2+\Delta x \right)-f\left( 2 \right)=\frac{1}{2+\Delta x}-\frac{1}{2} \\ =\frac{2-2-\Delta x}{2\left( 2+\Delta x \right)}=\frac{-\Delta x}{4+2\Delta x} \\ \end{align}$

Suy ra $\frac{\Delta y}{\Delta x}=\frac{\frac{-\Delta x}{4+2\Delta x}}{\Delta x}=\frac{-\Delta x}{\Delta x\left( 4+2\Delta x \right)}=\frac{-1}{4+2\Delta x}$

Ta thấy $\mathop {\lim }\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x}=\mathop {\lim }\limits_{\Delta x \to 0} \frac{-1}{4+2\Delta x}=\frac{-1}{4+2.0}=\frac{-1}{4}$

Vậy $f'\left( 2 \right)=\frac{-1}{4}$


Luyện tập – Vận dụng 2

Tính đạo hàm của hàm số \(f\left( x \right) = {x^3}\) tại điểm x bất kì bằng định nghĩa

Phương pháp giải:

Dựa vào ví dụ 2 để làm

Lời giải chi tiết:

Xét \(\Delta x\) là số gia của biến số tại điểm x

Ta có:

\(\begin{array}{l}\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) = {\left( {x + \Delta x} \right)^3} - {x^3} = \left( {x + \Delta x - x} \right)\left[ {x{{\left( {x + \Delta x} \right)}^2} + x.\left( {x + \Delta x} \right) + {x^2}} \right]\\ = \Delta x\left( {{x^2} + 2x.\Delta x + {{\left( {\Delta x} \right)}^2} + {x^2} + x.\Delta x + {x^2}} \right) = \Delta x.\left( {3{x^2} + {{\left( {\Delta x} \right)}^2} + 3x.\Delta x} \right)\\ \Rightarrow \frac{{\Delta y}}{{\Delta x}} = 3{x^2} + {\left( {\Delta x} \right)^2} + 3x.\Delta x\end{array}\)

Ta thấy:

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {3{x^2} + {{\left( {\Delta x} \right)}^2} + 3x.\Delta x} \right) = 3{x^2}\\ \Rightarrow f'\left( x \right) = 3{x^2}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"