Giải mục 2 trang 68, 69 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:49:22

Hoạt động 9

Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\)

a)     Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh

\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)

b)    Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\)

Phương pháp giải:

Sử dụng định nghĩa để tính đạo hàm \(f'({x_0}) = \mathop {\lim }\limits_{x \to x_0} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết:

a)     Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)

b)    \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)


LT9

Tính đạo hàm của hàm số $f\left( x \right)=x\sqrt{x}$ tại điểm x dương bất kì.

Phương pháp giải:

Dựa vào định lí đạo hàm của tích.

Lời giải chi tiết:

$f'\left( x \right)=x'\sqrt{x}+x\left( \sqrt{x} \right)'=\sqrt{x}+\frac{x}{2\sqrt{x}}=\sqrt{x}+\frac{1}{2}\sqrt{x}=\frac{3}{2}\sqrt{x}$.


Hoạt động 10

Cho hàm số \(y = f(u) = \sin u;\,\,u = g(x) = {x^2}\)

a)     Bằng cách thay u bởi \({x^2}\) trong biểu thức \(\sin u\), hãy biểu thị giá trị của y theo biến số x.

b)    Xác định hàm số \(y = f(g(x))\)

Phương pháp giải:

Thay biểu thức vào để tính

Lời giải chi tiết:

a)     \(f\left( u \right) = \sin {x^2}\)

b)    Hàm số: \(y = f\left( {{x^2}} \right) = \sin {x^2}\)


LT10

Tính đạo hàm của hàm số $f\left( x \right)=\tan x+\cot x$ tại điểm ${{x}_{0}}=\frac{\pi }{3}$.

Phương pháp giải:

Dựa vào định lí đạo hàm của tổng và đạo hàm của hàm số lượng giác.

Lời giải chi tiết:

Ta có: $f'\left( x \right)=\tan 'x+\cot 'x=\frac{1}{{{\cos }^{2}}x}-\frac{1}{{{\sin }^{2}}x}$

Tại ${{x}_{0}}=\frac{\pi }{3}$, $f'\left( \frac{\pi }{3} \right)=\frac{1}{{{\cos }^{2}}\frac{\pi }{3}}-\frac{1}{{{\sin }^{2}}\frac{\pi }{3}}=4-\frac{4}{3}=\frac{8}{3}$.


LT11

Hàm số $y={{\log }_{2}}\left( 3x+1 \right)$ là hàm hợp của hai hàm số nào?

Phương pháp giải:

Dựa vào khái niệm của hàm hợp.

Lời giải chi tiết:

Đặt u = 3x + 1, ta có: $y={{\log }_{3}}u$.

Vậy $y={{\log }_{2}}\left( 3x+1 \right)$ là hàm hợp của hai hàm số $y={{\log }_{3}}u$, u = 3x + 1.


LT12

Tính đạo hàm của mỗi hàm số sau:

a) $y={{e}^{3x+1}}$

b) $y={{\log }_{3}}\left( 2x-3 \right)$

Phương pháp giải:

Dựa vào quy tắc tính đạo hàm của hàm hợp

Lời giải chi tiết:

a) Đặt u = 3x + 1, y = log3u. Khi đó: y’u = eu; u’x= 3.

Theo công thức đạo hàm của hàm hợp, ta có:

y’x = y’u.u’x = eu.3 = 3.e3x + 1.

b) Đặt u = 2x - 3, y = eu. Khi đó: y’u = $\frac{1}{u\ln 3}$; u’x= 2.

Theo công thức đạo hàm của hàm hợp, ta có:

y’x = y’u.u’x = $\frac{1}{u\ln 3}$.2 = $\frac{2}{\left( 2x-3 \right)\ln 3}$

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"