Bài 2 trang 75 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:49:25

Đề bài

Tìm đạo hàm cấp hai của mỗi hàm số sau:

a)     \(y = 3{x^2} - 4x + 5\) tại điểm \({x_0} =  - 2\)

b)    \(y = {\log _3}(2x + 1)\) tại điểm \({x_0} = 3\)

c)     \(y = {e^{4x + 3}}\) tại điểm \({x_0} = 1\)

d)    \(y = \sin \left( {2x + \frac{\pi }{3}} \right)\) tại điểm \({x_0} = \frac{\pi }{6}\)

e)     \(y = \cos \left( {3x - \frac{\pi }{6}} \right)\) tại điểm \({x_0} = 0\).

Phương pháp giải - Xem chi tiết

Tìm đạo hàm cấp hai của từng hàm số rồi thay giá trị vào

Lời giải chi tiết

a,

\(y' = 6x - 4 \Rightarrow y'' = 6\)

Tại \({x_0} =  - 2 \Rightarrow y''( - 2) = 6\)

b,

\(\begin{array}{l}y' = \frac{2}{{\left( {2x + 1} \right)\ln 3}}\\ \Rightarrow y'' = \left( {2.\frac{1}{{\left( {\left( {2x + 1} \right)\ln 3} \right)}}} \right)' =  - 2.\frac{{\left( {\left( {2x + 1} \right)\ln 3} \right)'}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}}\\ =  - 2\frac{{2\ln 3}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}} = \frac{{ - 4\ln 3}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}}\end{array}\)

Tại \({x_0} = 3 \Rightarrow y''(3) = \frac{{ - 4\ln 3}}{{{{\left( {\left( {2.3 + 1} \right)\ln 3} \right)}^2}}} = \frac{{ - 4\ln 3}}{{{{\left( {7\ln 3} \right)}^2}}} = \frac{{ - 4}}{{49\ln 3}}\)

c, \(y' = 4{e^{4x + 3}} \Rightarrow y'' = 16{e^{4x + 3}}\)

Tại \({x_0} = 1 \Rightarrow y''(1) = 16.{e^{4.1 + 3}} = 16.{e^7}\)

d,

\(y' = 2\cos \left( {2x + \frac{\pi }{3}} \right) \Rightarrow y'' =  - 4\sin \left( {2x + \frac{\pi }{3}} \right)\)

Tại \({x_0} = \frac{\pi }{6} \Rightarrow y''\left( {\frac{\pi }{6}} \right) =  - 4\sin \left( {2.\frac{\pi }{6} + \frac{\pi }{3}} \right) =  - 2\sqrt 3 \)

e,

\(y' =  - 3.\sin \left( {3x - \frac{\pi }{6}} \right) \Rightarrow y'' =  - 9.\cos \left( {3x - \frac{\pi }{6}} \right)\)

Tại \({x_0} = 0 \Rightarrow y''(0) =  - 9.\cos \left( {3.0 - \frac{\pi }{6}} \right) = \frac{{ - 9\sqrt 3 }}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"