Bài 3 trang 76 SGK Toán 11 tập 2 - Cánh Diều

2024-09-14 12:49:28

Đề bài

Tính đạo hàm của mỗi hàm số sau:

a)     \(y = \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right)\)

b)    \(y = \frac{1}{{ - 2x + 5}}\)

c)     \(y = \sqrt {4x + 5} \)

d)    \(y = \sin x\cos x\)

e)     \(y = x{e^x}\)

f)      \(y = {\ln ^2}x\)

Phương pháp giải - Xem chi tiết

Dựa vào công thức đạo hàm của các hàm để tính

Lời giải chi tiết

a)     \(y = \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right) \Rightarrow y' = \left( {2x + 2} \right).\left( {{x^3} - 3x} \right) + \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right)\)

\( \Leftrightarrow y' = 2{x^4} - 6{x^2} + 2{x^3} - 6x + {x^5} - 3{x^3} + 2{x^4} - 6{x^2} = {x^5} + 4{x^4} - {x^3} - 12{x^2} - 6x\)

b)    \(y = \frac{1}{{ - 2x + 5}} \Rightarrow y' = \frac{2}{{{{\left( {2x + 5} \right)}^2}}}\)

c)     \(y = \sqrt {4x + 5}  \Rightarrow y' = \frac{4}{{2\sqrt {4x + 5} }}\)

d)    \(y = \sin x\cos x \Rightarrow y' = \cos x.\cos x - \sin x.\sin x = {\cos ^2}x - {\sin ^2}x = \cos 2x\)

e)     \(y = x{e^x} \Rightarrow y' = {e^x} + x{e^x}\)

f)      \(y = {\ln ^2}x \Rightarrow y' = \frac{{\left( { - 1} \right)}}{{{x^2}}} =  - \frac{1}{{{x^2}}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"