Hoạt động 1
Cho hình lăng trụ tam giác có các mặt bên là hình chữ nhật ở Hình 80a, 80b. Hãy cho biết mỗi cạnh bên của lăng trụ đó có vuông góc với các mặt đáy hay không.
Phương pháp giải:
Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.
Lời giải chi tiết:
\(ABB'A'\) là hình chữ nhật \( \Rightarrow AA' \bot AB\)
\(ACC'A'\) là hình chữ nhật \( \Rightarrow AA' \bot AC\)
\(\left. \begin{array}{l} \Rightarrow AA' \bot \left( {ABC} \right)\\AA'\parallel BB'\parallel CC'\end{array} \right\} \Rightarrow BB' \bot \left( {ABC} \right),CC' \bot \left( {ABC} \right)\)
Vậy các cạnh bên của lăng trụ đó vuông góc với các mặt đáy.
Luyện tập 1
Cho hình lập phương có cạnh bằng \(a\). Tính độ dài đường chéo của hình lập phương đó.
Phương pháp giải:
Sử dụng định lí Pitago.`
Lời giải chi tiết:
\(\Delta ABC\) vuông tại \(B \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \)
\(\Delta AA'C\) vuông tại \(A \Rightarrow A'C = \sqrt {AA{'^2} + A{C^2}} = a\sqrt 3 \)
Vậy độ dài đường chéo của hình lập phương đó bằng \(a\sqrt 3 \).