Bài 1.10 trang 15 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:05

Đề bài

Bài 1.10 trang 15

Khi một quả bóng được đá lên không trung từ mặt đất, khoảng cách x từ quả bóng đó đến đường thẳng vuông góc với mặt đất tại vị trí đá liên hệ với chiều cao y của nó theo công thức: \(y = \frac{{ - g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \frac{{x\sin \alpha }}{{\cos \alpha }}\), trong đó \({v_0}\) là vận tốc ban đầu của quả bóng, \(\alpha \) là góc đá quả bóng so với phương nằm ngang và g là gia tốc trọng trường (nguồn: https://pressbooks.uiowa.edu/clonedbook/chapter/projectile-motion/). Chứng minh rằng: \(y =  - \frac{{g{x^2}}}{{2v_0^2}}{\tan ^2}\alpha  + x\tan \alpha  - \frac{{g{x^2}}}{{2v_0^2}}\).

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác.

Lời giải chi tiết

\(\begin{array}{l}y = \frac{{ - g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \frac{{x\sin \alpha }}{{\cos \alpha }} = \frac{{ - g{x^2}}}{{2v_0^2}}.\frac{1}{{{{\cos }^2}\alpha }} + x.\tan \alpha \\ = \frac{{ - g{x^2}}}{{2v_0^2}}.\left( {1 + {{\tan }^2}\alpha } \right) + x.\tan \alpha \\ = \frac{{ - g{x^2}}}{{2v_0^2}}{\tan ^2}\alpha  + x.\tan \alpha  - \frac{{ - g{x^2}}}{{2v_0^2}}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"