Đề bài
Chứng minh các đẳng thức sau (giả sử các biểu thức đều có nghĩa):
a) \({\cos ^4}\alpha - {\sin ^4}\alpha = \cos 2\alpha ;\)
b) \(\sin \left( {a + b} \right)\sin \left( {a - b} \right) = {\cos ^2}b - {\cos ^2}a;\)
c) \(\frac{{\sin a + \sin 2a}}{{1 + \cos a + \cos 2a}} = \tan a.\)
Phương pháp giải - Xem chi tiết
Biến đổi vế trái (thường là vế phức tạp hơn) thành vế phải (thường là vế đơn giản hơn).
Áp dụng công thức nhân đôi, công thức biến tích thành tổng.
Lời giải chi tiết
a)
\(\begin{array}{l}{\cos ^4}\alpha - {\sin ^4}\alpha = {\left( {{{\cos }^2}\alpha } \right)^2} - {\left( {{{\sin }^2}\alpha } \right)^2}\\ = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right)\\ = \cos 2\alpha .1 = \cos 2\alpha \end{array}\)
b)
\(\begin{array}{l}\sin \left( {a + b} \right)\sin \left( {a - b} \right) = \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) - \cos \left( {a + b + a - b} \right)} \right]\\ = \frac{1}{2}\left( {\cos 2b - \cos 2a} \right) = \frac{1}{2}\left( {2{{\cos }^2}b - 1 - 2{{\cos }^2}a + 1} \right)\\ = \frac{1}{2}\left( {2{{\cos }^2}b - 2{{\cos }^2}a} \right) = {\cos ^2}b - {\cos ^2}a\end{array}\)
c)
\(\begin{array}{l}\frac{{\sin a + \sin 2a}}{{1 + \cos a + \cos 2a}} = \frac{{\sin a + 2\sin a\cos a}}{{1 + \cos a + 2{{\cos }^2}a - 1}}\\ = \frac{{\sin a\left( {1 + 2\cos a} \right)}}{{\cos a + 2{{\cos }^2}a}} = \frac{{\sin a\left( {1 + 2\cos a} \right)}}{{\cos a\left( {1 + 2\cos a} \right)}}\\ = \frac{{\sin a}}{{\cos a}} = \tan a\end{array}\)