Đề bài
Không dùng máy tính cầm tay, tính:
a) \(\sin \frac{{5\pi }}{{12}};\)
b) \(\cos \left( { - \frac{\pi }{{12}}} \right);\)
c) \(\tan \left( { - {{75}^0}} \right).\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức cộng.
\(\begin{array}{l}\sin \left( {a + b} \right) = \sin a\cos b + \cos asinb\\sin\left( {a - b} \right) = \sin a\cos b - \cos asinb\\\cos \left( {a + b} \right) = \cos a\cos b - \sin asinb\\\cos \left( {a - b} \right) = \cos a\cos b + \sin asinb\\\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\\\tan \left( {a - b} \right) = \frac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\end{array}\)
Lời giải chi tiết
a) \(\sin \frac{{5\pi }}{{12}} = \sin \left( {\frac{\pi }{4} + \frac{\pi }{6}} \right) = \sin \frac{\pi }{4}\cos \frac{\pi }{6} + \cos \frac{\pi }{4}\sin \frac{\pi }{6} = \frac{{\sqrt 6 + \sqrt 2 }}{4}\)
b) \(\cos \left( { - \frac{\pi }{{12}}} \right) = \cos \left( {\frac{\pi }{4} - \frac{\pi }{3}} \right) = \cos \frac{\pi }{4}\cos \frac{\pi }{3} + \sin \frac{\pi }{4}\sin \frac{\pi }{3} = \frac{{\sqrt 6 + \sqrt 2 }}{4}\)
c) \(\tan \left( { - {{75}^0}} \right) = \tan \left( { - {{30}^0} - {{45}^0}} \right) = \frac{{\tan \left( { - {{30}^0}} \right) - \tan {{45}^0}}}{{1 + \tan \left( {{{30}^0}} \right)\tan {{45}^0}}} = - 2 - \sqrt 3 \)