Giải mục 2 trang 22, 23, 24, 25 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:25

Hoạt động 3

Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau:

\(x = \frac{\pi }{2};x =  - \frac{\pi }{4};x = \frac{{11\pi }}{3};x =  - 2,5.\)

Phương pháp giải:

Sử dụng máy tính cầm tay tính \(\sin \frac{\pi }{2},\cos \frac{\pi }{2},\sin \left( { - \frac{\pi }{4}} \right),\cos \left( { - \frac{\pi }{4}} \right),\sin \frac{{11\pi }}{3},\cos \frac{{11\pi }}{3},\sin \left( { - 2,5} \right),\cos \left( { - 2,5} \right)\).

Lời giải chi tiết:

\(\begin{array}{l}\cos \frac{\pi }{2} = 0,\sin \frac{\pi }{2} = 1\\\cos \frac{{ - \pi }}{4} = \frac{{\sqrt 2 }}{2},\sin \frac{{ - \pi }}{4} =  - \frac{{\sqrt 2 }}{2}\\\cos \frac{{11\pi }}{3} = \frac{1}{2},\sin \frac{{11\pi }}{3} =  - \frac{{\sqrt 3 }}{2}\\\cos \left( { - 2,5} \right) \approx  - 0,8,\sin \left( { - 2,5} \right) =  - 0,6\end{array}\)


Luyện tập 3

Tính giá trị của hàm số \(y = \sin x\) và hàm số \(y = \cos x\) khi \(x = \frac{{3\pi }}{2};x =  - \frac{{11\pi }}{4};x = \frac{{14\pi }}{3}.\)

Phương pháp giải:

Sử dụng máy tính cầm tay tính \(\sin \frac{{3\pi }}{2},\cos \frac{{3\pi }}{2},\sin \left( { - \frac{{11\pi }}{4}} \right),\cos \left( { - \frac{{11\pi }}{4}} \right),\sin \frac{{14\pi }}{3},\cos \frac{{14\pi }}{3}\).

Lời giải chi tiết:

\(\begin{array}{l}y = \cos \frac{{3\pi }}{2} = 0,y = \sin \frac{{3\pi }}{2} =  - 1\\y = \cos \frac{{ - 11\pi }}{4} =  - \frac{{\sqrt 2 }}{2},y = \sin \frac{{ - 11\pi }}{4} =  - \frac{{\sqrt 2 }}{2}\\y = \cos \frac{{14\pi }}{3} =  - \frac{1}{2},y = \sin \frac{{14\pi }}{3} = \frac{{\sqrt 3 }}{2}\end{array}\)


Vận dụng 1

Phương trình li độ của một vật dao động điều hòa có dạng: \(x =  - 6\cos \left( {\pi t + \frac{\pi }{6}} \right)\), trong đó x (cm) là li độ của vật (hay độ dời của vật so với vị trí cân bằng) tại thời điểm t (giây). Tính li độ của vật tại thời điểm t = 3 giây.

Phương pháp giải:

Thay t = 3 vào phương trình li độ.

Lời giải chi tiết:

Thay t = 3 vào phương trình li độ, ta có:

\(x =  - 6\cos \left( {\pi .3 + \frac{\pi }{6}} \right) =  - 6\cos \left( {\frac{{19\pi }}{6}} \right) = 3\sqrt 3 \)

Vậy li độ tại thời điểm t = 3 giây là \(3\sqrt 3 \)(cm).


Hoạt động 4

Tính tang và côtang của góc lượng giác có số đo bằng x trong các trường hợp sau:

\(x = \frac{{7\pi }}{3};x =  - \frac{{5\pi }}{4};x = \frac{{11\pi }}{6};x =  - 3.\)

Phương pháp giải:

Sử dụng máy tính cầm tay tính \(\tan \frac{{7\pi }}{3},\cot \frac{{7\pi }}{3},\tan \left( { - \frac{{5\pi }}{4}} \right),\cot \left( { - \frac{{5\pi }}{4}} \right),\tan \frac{{11\pi }}{6},\cot \frac{{11\pi }}{6},\tan \left( { - 3} \right),\cot \left( { - 3} \right)\).

Lời giải chi tiết:

\(\begin{array}{l}\tan \frac{{7\pi }}{3} = \sqrt 3 ,\cot \frac{{7\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{5\pi }}{4}} \right) =  - 1,\cot \left( { - \frac{{5\pi }}{4}} \right) =  - 1\\\tan \frac{{11\pi }}{6} =  - \frac{{\sqrt 3 }}{3},\cot \frac{{11\pi }}{6} =  - \sqrt 3 \\\tan \left( { - 3} \right) \approx 0,14;\cot \left( { - 3} \right) \approx 7,02\end{array}\)


Luyện tập 4

Tính giá trị của hàm số \(y = \tan x\) và hàm số \(y = \cot x\) khi \(x = \frac{{13\pi }}{3};x =  - \frac{{9\pi }}{4};x = \frac{{19\pi }}{6}.\)

Phương pháp giải:

Sử dụng máy tính cầm tay tính \(\tan \frac{{13\pi }}{3},\cot \frac{{13\pi }}{3},\tan \left( { - \frac{{9\pi }}{4}} \right),\cot \left( { - \frac{{9\pi }}{4}} \right),\tan \frac{{19\pi }}{6},\cot \frac{{19\pi }}{6}\).

Lời giải chi tiết:

\(\begin{array}{l}\tan \frac{{13\pi }}{3} = \sqrt 3 ,\cot \frac{{13\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{9\pi }}{4}} \right) =  - 1,\cot \left( { - \frac{{9\pi }}{4}} \right) =  - 1\\\tan \frac{{19\pi }}{6} = \frac{{\sqrt 3 }}{3},\cot \frac{{19\pi }}{6} = \sqrt 3 \end{array}\)


Hoạt động 5

a) So sánh các giá trị \(\sin x\) và \(\sin \left( { - x} \right)\), \(\cos x\) và \(\cos \left( { - x} \right)\).

b) So sánh các giá trị \(\tan x\) và \(\tan \left( { - x} \right)\) khi \(x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).

c) So sánh các giá trị \(\cot x\) và \(\cot \left( { - x} \right)\) khi \(x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).

Phương pháp giải:

Áp dụng công thức lượng giác giữa 2 góc đối nhau.

Lời giải chi tiết:

a)

\(\begin{array}{l}\sin \left( { - x} \right) =  - \sin x\\\cos \left( { - x} \right) = \cos x\end{array}\)

b) \(\tan \left( { - x} \right) =  - \tan x\)

c) \(\cot \left( { - x} \right) = \cot x\)


Luyện tập 5

Xác định tính chẵn, lẻ của hàm số \(y = f\left( x \right) = \sin x - \tan x.\)

Phương pháp giải:

So sánh\(f\left( { - x} \right)\) và \(f\left( x \right)\).

Lời giải chi tiết:

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow  - x \in D\end{array}\)

\(f\left( { - x} \right) = \sin \left( { - x} \right) - \tan \left( { - x} \right) =  - \sin x + \tan x =  - \left( {\sin x - \tan x} \right) =  - f\left( x \right)\)

Vậy hàm số đã cho là hàm số lẻ.


Hoạt động 6

Tìm một số \(T \ne 0\) sao cho \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số sau:

a) \(f\left( x \right) = \sin x;\)

b) \(f\left( x \right) = \cos x;\)

c) \(f\left( x \right) = \tan x;\)

d) \(f\left( x \right) = \cot x.\)

Phương pháp giải:

Dựa vào tính chất 

\(\begin{array}{l}\sin \left( {\alpha  + k2\pi } \right) = \sin \alpha \\\cos \left( {\alpha  + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha  + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha  + k\pi } \right) = \cot \alpha \end{array}\)

Tìm ra T, từ đó chứng minh \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số.

Lời giải chi tiết:

a)

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi  \in D,x - 2\pi  \in D\\f\left( {x + 2\pi } \right) = \sin \left( {x + 2\pi } \right) = \sin x = f\left( x \right)\end{array}\)

b)

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi  \in D,x - 2\pi  \in D\\f\left( {x + 2\pi } \right) = \cos \left( {x + 2\pi } \right) = \cos x = f\left( x \right)\end{array}\)

c)

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi  \in D,x - \pi  \in D\\f\left( {x + \pi } \right) = \tan \left( {x + \pi } \right) = \tan x = f\left( x \right)\end{array}\)

d)

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi  \in D,x - \pi  \in D\\f\left( {x + \pi } \right) = \cot \left( {x + \pi } \right) = \cot x = f\left( x \right)\end{array}\)


Luyện tập 6

Chứng minh hàm số \(y = f\left( x \right) = 1 - \cot x\) là hàm số tuần hoàn.

Phương pháp giải:

Chỉ ra \(f\left( {x + T} \right) = f\left( x \right)\) với T khác 0 là chu kì tuần hoàn.

Lời giải chi tiết:

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi  \in D,x - \pi  \in D\\f\left( {x + \pi } \right) = 1 - \cot \left( {x + \pi } \right) = 1 - \cot x = f\left( x \right)\end{array}\)

Vậy hàm số đã cho là hàm số tuần hoàn.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"