Bài 1.25 trang 40 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:28

Đề bài

Giải các phương trình sau:

a) \(\tan 3x =  - 1;\)

b) \(\cot \left( {x - \pi } \right) = 7;\)

c) \(\cot \left( {2x - {{120}^0}} \right) = \sqrt 3 ;\)

d) \(\tan \left( {\frac{x}{2} - 1} \right) =  - \frac{1}{3}.\)

Phương pháp giải - Xem chi tiết

\(\begin{array}{l}\tan a = m \Leftrightarrow \tan a = \tan b\\ \Leftrightarrow a = b + k\pi \left( {k \in \mathbb{Z}} \right)\\\cot a = m \Leftrightarrow \cot a = \cot b\\ \Leftrightarrow a = b + k\pi \left( {k \in \mathbb{Z}} \right)\end{array}\)

Lời giải chi tiết

a)

\(\begin{array}{l}\tan 3x =  - 1\\ \Leftrightarrow \tan 3x = \tan \left( { - {{45}^0}} \right)\\ \Leftrightarrow 3x =  - {45^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow x =  - {15^0} + k{60^0}\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy phương trình có nghiệm là \(x =  - {15^0} + k{60^0}\left( {k \in \mathbb{Z}} \right)\)

b)

\(\begin{array}{l}\cot \left( {x - \pi } \right) = 7\\ \Leftrightarrow x - \pi  \approx 0,14 + k\pi \left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow x = 3,28 + k\pi \left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy phương trình có nghiệm là  \(x = 3,28 + k\pi \left( {k \in \mathbb{Z}} \right)\)

c)

\(\begin{array}{l}\cot \left( {2x - {{120}^0}} \right) = \sqrt 3 \\ \Leftrightarrow 2x - {120^0} = {30^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow 2x = {150^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow x = {75^0} + k{90^0}\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy phương trình có nghiệm là \(x = {75^0} + k{90^0}\left( {k \in \mathbb{Z}} \right)\)

d) 

\(\begin{array}{l}\tan \left( {\frac{x}{2} - 1} \right) =  - \frac{1}{3}\\ \Leftrightarrow \frac{x}{2} - 1 \approx  - 0,32 + k\pi \left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \frac{x}{2} = 0,68 + k\pi \left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow x = 1,36 + k2\pi \left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy phương trình có nghiệm là \(x = 1,36 + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"