Bài 1.34 trang 41 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:35

Đề bài

a) Hàm số \(y = \cos 2x\) có phải là hàm số chẵn không? Vì sao?

b) Hàm số \(y = \sin x + \cos x\) có phải là hàm số lẻ không? Vì sao?

c) Hàm số \(y = \tan \left( {x + \frac{\pi }{5}} \right)\) có phải là hàm số tuần hoàn không? Vì sao?

Phương pháp giải - Xem chi tiết

a)

\(\begin{array}{l}\forall x \in D \Rightarrow  - x \in D\end{array}\)

Nếu \(f\left( { - x} \right) = f\left( x \right)\) thì là hàm số chẵn.

b)

\(\begin{array}{l}\forall x \in D \Rightarrow  - x \in D\end{array}\)

Nếu \(f\left( { - x} \right) =  - f\left( x \right)\) thì là hàm số lẻ.

c)

\(\begin{array}{l}\forall x \in D \Rightarrow x + \pi  \in D,x - \pi  \in D\end{array}\)

Nếu \(f\left( {x + T} \right) = f\left( x \right)\) thì là hàm số tuần hoàn với \(T \ne 0\).

Lời giải chi tiết

a)

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow  - x \in D\\f\left( { - x} \right) = \cos \left( { - 2x} \right) = \cos 2x = f\left( x \right)\end{array}\)

Vậy hàm số đã cho là hàm số chẵn.

b)

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow  - x \in D\\f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) =  - \sin x + \cos x \ne f\left( x \right)\end{array}\)

Vậy hàm số đã cho không phải hàm số lẻ.

c)

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{{3\pi }}{{10}} + k\pi } \right\}\\\forall x \in D \Rightarrow x + \pi  \in D,x - \pi  \in D\\f\left( {x + \pi } \right) = \tan \left( {x + \pi  + \frac{\pi }{5}} \right) = \tan \left( {x + \frac{\pi }{5}} \right) = f\left( x \right)\end{array}\)

Vậy hàm số đã cho là hàm số tuần hoàn.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"