Bài 1.33 trang 41 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:35

Đề bài

Chứng minh các đẳng thức sau:

a) \({\left( {\cos a - \sin a} \right)^2} = 1 - \sin 2a;\)

b) \(\cos \left( {a + b} \right)\cos \left( {a - b} \right) = {\cos ^2}a - {\sin ^2}b;\)

c) \(\frac{{\sin a + \sin 3a}}{{1 + \cos 2a}} = 2\sin a\,\,\,\,\left( {{\rm{khi }}\cos 2a \ne  - 1} \right)\)

d) \(\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9} + \cos \frac{{7\pi }}{9} = 0.\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức nhân đôi, công thức biến đổi tích thành tổng, công thức biến đổi tổng thành tích.

Lời giải chi tiết

a) \({\left( {\cos a - \sin a} \right)^2} = {\cos ^2}a - 2\cos a\sin a + {\sin ^2}a = 1 - \sin 2a\)

b)

\(\begin{array}{l}\cos \left( {a + b} \right)\cos \left( {a - b} \right) = \frac{1}{2}\left[ {\cos \left( {2a} \right) + \cos \left( {2b} \right)} \right] = \frac{1}{2}\left( {2{{\cos }^2}a - 1 + 2{{\cos }^2}b - 1} \right)\\ = \frac{1}{2}\left( {2{{\cos }^2}a - 2{{\cos }^2}b} \right) = {\cos ^2}a - {\sin ^2}b\end{array}\)

c) \(\frac{{\sin a + \sin 3a}}{{1 + \cos 2a}} = \frac{{2\sin \left( {2a} \right)\cos a}}{{2{{\cos }^2}a}} = \frac{{\sin \left( {2a} \right)}}{{\cos a}} = \frac{{2\sin a\cos a}}{{\cos a}} = 2\sin a\)

d)

\(\begin{array}{l}\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9} + \cos \frac{{7\pi }}{9} = \cos \frac{\pi }{9} + 2\cos \frac{{2\pi }}{3}\cos \frac{\pi }{9}\\ = \cos \frac{\pi }{9}\left( {1 + 2\cos \frac{{2\pi }}{3}} \right) = \cos \frac{\pi }{9}\left( {1 + 2.\left( { - \frac{1}{2}} \right)} \right) = \cos \frac{\pi }{9}.0 = 0\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"