Bài 2.27 trang 57 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:49

Đề bài

Một cấp số nhân hữu hạn có 10 số hạng và công bội \(q = \frac{1}{2}\). Tổng các số hạng của cấp số nhân là 511,5. Số hạng đầu của cấp số nhân là

A. 512

B. 256

C. 128

D. 64

Phương pháp giải - Xem chi tiết

Thay \(n = 10,q = \frac{1}{2}\) vào công thức \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) để tìm \({u_1}\)

Lời giải chi tiết

\(\begin{array}{l}{S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\\ \Leftrightarrow 511,5 = \frac{{{u_1}\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right]}}{{1 - \frac{1}{2}}}\\ \Leftrightarrow {u_1} = 256\end{array}\)

Chọn đáp án B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"