Đề bài
Tìm tổng các số nguyên dương có ba chữ số và chia hết cho 3.
Phương pháp giải - Xem chi tiết
Từ đầu bài, xác định \({u_1},d,{u_n},n\). Áp dụng công thức để tính tổng: \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\)
Lời giải chi tiết
Các số nguyên dương có ba chữ số và chia hết cho 3 cách đều nhau 3 đơn vị nên ta lập được cấp số cộng với \({u_1} = 102,d = 3\).
Số hạng cuối cùng của dãy là 999. Suy ra số số hạng của dãy là \(\frac{{999 - 102}}{3} + 1 = 300\).
Vậy tổng các số nguyên dương có 3 chữ số và chia hết cho 3 là \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{300\left( {102 + 999} \right)}}{2} = 165150\).