Giải mục 1 trang 59, 60, 61, 62 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:56

Hoạt động 1

Cho dãy số (\({u_n}\)) được xác định bởi \({u_n} = \frac{1}{n}\)

a, Tính giá trị của \({u_1},{u_2},{u_3},{u_4},{u_{10}}\)và biểu diễn chúng trên trục số thực dưới đây:

b, Khi n tăng thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào ? Điều đó thể hiện thế nào trên trục số.

c, Bắt đầu từ số hạng thứ mấy thì khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,01? Câu hỏi tương tự với 0,001; 0,00001.

Phương pháp giải:

a, Lần lượt thay giá trị n=1, n= 2, n=3, n=4, n= 10 vào công thức \({u_n} = \frac{1}{n}\) để được các giá trị tương ứng \({u_1},{u_2},{u_3},{u_4},{u_{10}}\).

b, Khoảng cách giữa \({u_n}\) và 0 là giá trị của \({u_n}\).

Khi n tăng thì giá trị \(\frac{1}{n}\) càng nhỏ, khoảng cách giữa \({u_n}\) và 0 càng gần nhau hơn.

Trên trục số, các giá trị n càng lớn thì khoảng cách giữa \({u_n}\) và 0 càng nhỏ.

c, 0,01=\(\frac{1}{{100}}\)= \({u_{100}}\). Với các giá trị n > 100 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.

Lời giải chi tiết:

a, Ta có: \({u_1} = \frac{1}{1} = 1\), \({u_2} = \frac{1}{2}\), \({u_3} = \frac{1}{3}\), \({u_4} = \frac{1}{4}\), \({u_{10}} = \frac{1}{{10}}\).

Biểu diễn trên trục số:

b, Khi n tăng thì \(\frac{1}{n}\) càng nhỏ do đó, khoảng cách giữa \({u_n}\) và 0 càng nhỏ khi n tăng.

c, Ta có : 0,01=\(\frac{1}{{100}}\)= \({u_{100}}\). Với các giá trị n > 100 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.  Vậy bắt đầu từ số hạng thứ 101 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.

Tương tự:

 0,001= \(\frac{1}{{1000}}\)=\({u_{1000}}\)

Vậy bắt đầu từ số hạng 1001 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,001.

0,00001=\(\frac{1}{{100000}} = {u_{100000}}\).

Vậy bắt đầu từ số hạng 100001 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,00001.


Luyện tập 1

Cho dãy số (\({u_n}\)) với \({u_n} = {(\frac{1}{2})^n}\)

a, Viết năm số hạng đầu tiên của dãy số đã cho.

b, Khi giá trị n càng lớn thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào?

Phương pháp giải:

a, Thay các giá trị n = 1, n = 2, n = 3, n = 4, n = 5 vào công thức \({u_n} = {(\frac{1}{2})^n}\) để được năm số hạng đầu tiên của dãy.

\({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\); \({u_2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\); \({u_3} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\); \({u_4} = {\left( {\frac{1}{2}} \right)^4} = \frac{1}{{16}}\); \({u_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)

b, Khi n càng tăng thì giá trị \({u_n}\) càng nhỏ. Do đó, khoảng cách \({u_n}\) và 0 càng nhỏ.

Lời giải chi tiết:

a, Ta có :

\({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\); \({u_2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\); \({u_3} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\); \({u_4} = {\left( {\frac{1}{2}} \right)^4} = \frac{1}{{16}}\); \({u_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)

Vậy năm số hạng đầu tiên của dãy số là: \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};\frac{1}{{32}}\).

b, Khi n càng tăng thì khoảng cách \({u_n}\) và 0 càng nhỏ.


Hoạt động 2

Cho dãy số (\({u_n}\)) với \({u_n}\)=\(\frac{{3n + 1}}{n}\). Xét dãy số (\({v_n}\)) với \({v_n} = {u_n} - 3\). Viết công thức tính số hạng tổng quát \({v_n}\)và \(\mathop {\lim }\limits_{n \to  + \infty } {v_n}\).

Phương pháp giải:

Thay \({u_n}\)=\(\frac{{3n + 1}}{n}\) vào công thức \({v_n} = {u_n} - 3\) để được số hạng tổng quát của \({v_n}\).

Sử dụng phần lưu ý mục 1 là \(\mathop {\lim }\limits_{n \to  + \infty } \frac{1}{n} = 0\) để tính \(\mathop {\lim }\limits_{n \to  + \infty } {v_n}\).

Lời giải chi tiết:

Ta có: \({v_n} = {u_n} - 3\)= \(\frac{{3n + 1}}{n} - 3 = \frac{{3n + 1 - 3n}}{n} = \frac{1}{n}\).

Khi đó, \(\mathop {\lim }\limits_{n \to  + \infty } {v_n}\)=\(\mathop {\lim }\limits_{n \to  + \infty } \frac{1}{n} = 0\).


Luyện tập 2

Chứng minh rằng: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{1 - 4{n^2}}}{{{n^2}}} =  - 4\).

Phương pháp giải:

Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } \left[ {\frac{{1 - 4{n^2}}}{{{n^2}}} - ( - 4)} \right] = \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^2}}} = 0\)

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{n \to  + \infty } \left[ {\frac{{1 - 4{n^2}}}{{{n^2}}} - ( - 4)} \right]\)

=\(\mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{{1 - 4{n^2}}}{{{n^2}}} + 4} \right)\)

=\(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{1 - 4{n^2} + 4{n^2}}}{{{n^2}}})\)

\(\mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^2}}} = 0\)

Vậy \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{1 - 4{n^2}}}{{{n^2}}} =  - 4\).


Hoạt động 3

a, Chứng minh rằng \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{6{n^3} + 1}}{{{n^3}}} = 6\)

b, So sánh \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{6{n^3} + 1}}{{{n^3}}}\) và \((\mathop {\lim }\limits_{n \to  + \infty } 6 + \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}})\).

Phương pháp giải:

a, Tính \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{6{n^3} + 1}}{{{n^3}}} - 6) = \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}} = 0\).

b, Tính \((\mathop {\lim }\limits_{n \to  + \infty } 6 + \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}})\) và sử dụng kết quả câu a để so sánh.

Lời giải chi tiết:

a, Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{6{n^3} + 1}}{{{n^3}}} - 6)\)

            = \(\mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{{6{n^3} + 1 - 6{n^3}}}{{{n^3}}}} \right)\)

           = \(\mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}} = 0\).

Vậy \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{6{n^3} + 1}}{{{n^3}}} = 6\).

b, Ta có: \(\mathop {\lim }\limits_{n \to  + \infty } 6 = 6\) và \(\mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}} = 0\)

Do đó: \((\mathop {\lim }\limits_{n \to  + \infty } 6 + \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}})\)= 6

Vậy: \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{6{n^3} + 1}}{{{n^3}}}\) = \((\mathop {\lim }\limits_{n \to  + \infty } 6 + \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{{n^3}}})\).


Luyện tập 3

Tìm \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) và \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)

Phương pháp giải:

Tính \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\)  chia cả tử và mẫu cho \({n^3}\)

Tính \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)  chia cả tử và mẫu cho \({6^n}\).

Lời giải chi tiết:

Ta có: \(\frac{{6 - 7{n^2}}}{{2{n^3} + 9}} = \frac{{6.\frac{1}{{{n^3}}} - 7.\frac{1}{n}}}{{2 + 9.\frac{1}{{{n^3}}}}}\)

Vì lim 6=6, lim 7=7, lim 2= 2, lim 9=9, \(\lim \frac{1}{{{n^3}}} = 0\), \(\lim \frac{1}{n} = 0\) nên:

\(\lim (6.\frac{1}{{{n^3}}} - 7.\frac{1}{n}) = 6.0 + 7.0 = 0\) và \(\lim (2 + 9.\frac{1}{{{n^3}}}) = 2 + 9.0 = 2\)

Vậy \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) \( = 0\).

Ta có: \(\frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\) = \(\frac{{{{(\frac{5}{6})}^n} + 2}}{{1 + {{(\frac{4}{6})}^n}}} = \frac{{{{(\frac{5}{6})}^n} + 2}}{{1 + {{(\frac{2}{3})}^n}}}\)

Vì \(\lim {(\frac{5}{6})^n} = 0\); \(\lim {(\frac{2}{3})^n} = 0\); \(\lim 2 = 2\); \(\lim 1 = 1\) nên :

\(\lim \left[ {{{(\frac{5}{6})}^n} + 2} \right] = 2\)và \(\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right] = 1\)

Vậy \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)= 2.


Hoạt động 4

1.Chứng minh rằng dãy số (\({u_n}\)) và (\({v_n}\)) với công thức tính số hạng tổng quát lần lượt là \({u_n} = {(\frac{1}{2})^n}\) và \({v_n} = 2.{(\frac{{ - 2}}{3})^n}\) là cấp số nhân mà công bội của chúng có giá trị tuyệt đối nhỏ hơn 1.

2.Cho cấp số nhân (\({u_n}\)) có công bội q. ( \(\left| q \right| < 1\))

a, Viết công thức tính tổng \({S_n}\) của n số hạng đầu tiên  của (\({u_n}\)) theo \({u_1}\) và q.

b, Nếu quy ước S=\({u_1} + {u_2} + ... + {u_n} + ... = \lim {S_n}\), hãy tính S theo \({u_1}\) và q.

Phương pháp giải:

1.Tìm công bội q của dãy số (\({u_n}\)) và (\({v_n}\)) để chứng minh là cấp số nhân

2. a, Viết công thức tính \({S_n}\) của cấp số nhân \({S_n} = \frac{{{u_{1.}}.(1 - {q^n})}}{{1 - q}}\)

    b, Dựa vào lim\({q^n} = 0\), tính lim \({S_n}\).

Lời giải chi tiết:

1.Chứng minh dãy số (\({u_n}\)) là cấp số nhân

Ta có: \({u_{n + 1}} = {(\frac{1}{2})^{n + 1}}\) ; \({u_n} = {(\frac{1}{2})^n}\)

\( \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{(\frac{1}{2})}^{n + 1}}}}{{{{(\frac{1}{2})}^n}}} = \frac{1}{2}\)

Vậy dãy số (\({u_n}\)) là cấp số nhân với công bội q=\(\frac{1}{2}\).

Chứng minh dãy số (\({v_n}\)) là cấp số nhân

Ta có: \({v_{n + 1}} = 2.{(\frac{{ - 2}}{3})^{n + 1}}\); \({v_n} = 2.{(\frac{{ - 2}}{3})^n}\)

\( \Rightarrow \frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{2.{{(\frac{{ - 2}}{3})}^{n + 1}}}}{{2.{{(\frac{{ - 2}}{3})}^n}}} = \frac{{ - 2}}{3}\)

Vậy dãy số (\({v_n}\)) là cấp số nhân với công bội \(q = \frac{{ - 2}}{3}\).

2. a, Tổng \({S_n}\) của n số hạng đầu tiên  của (\({u_n}\)) theo \({u_1}\) và q là: \({S_n} = \frac{{{u_{1.}}.(1 - {q^n})}}{{1 - q}}\)

b, S=\({u_1} + {u_2} + ... + {u_n} + ... = \lim {S_n}\)= \(\lim \frac{{{u_1}.(1 - {q^n})}}{{1 - q}}\)

Ta có lim \({q^n} = 0\)( với \(\left| q \right| < 1\)) \( \Rightarrow \lim (1 - {q^n}) = 1\), lim \({u_1} = {u_1}\), lim (1-q)=1-q

lim\({S_n} = \)\(\frac{{1.{u_1}}}{{1 - q}} = \frac{{{u_1}}}{{1 - q}}\).


Luyện tập 4

Tính tổng cấp số nhân lùi vô hạn S= \(1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}} + ...\)

Phương pháp giải:

S là tổng của cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{2}\) và \({u_1} = 1\) .Áp dụng công thức S=\(\frac{{{u_1}}}{{1 - q}}\) để tính tổng.

Lời giải chi tiết:

Ta có S là tổng của cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{2}\) và \({u_1} = 1\).

S=\(\frac{{{u_1}}}{{1 - q}}\)=\(\frac{1}{{1 - \frac{1}{2}}} = \frac{1}{{\frac{1}{2}}} = 2\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"