I. Giới hạn của hàm số tại một điểm
1. Giới hạn hữu hạn của hàm số tại một điểm
Cho điểm \({x_0}\) thuộc khoảng K và hàm số \(y = f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(y = f(x)\) có giới hạn hữu hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)
Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).
2. Định lí về giới hạn hữu hạn của hàm số
a, Cho \(y = f(x)\) và \(y = g(x)\) là các hàm số xác định trên \(K\backslash \left\{ {{x_0}} \right\}\)
Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\), trong đó M, L là các số thực thì:
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)
b, Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).
3. Giới hạn vô cực
Cho điểm \({x_0}\)thuộc khoảng K và hàm số \(y = f(x)\) xác định trên K hoặc \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(f(x)\) có giới hạn là \( + \infty \)(hoặc \( - \infty \) ) khi \(x\) dần tới \({x_0}\) nếu với mọi dãy số \(\left( {{x_n}} \right)\), \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) mà \(\lim {x_n} = {x_0}\), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \) (hoặc \(\lim f\left( {{x_n}} \right) = - \infty \) kí hiệu kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to {x_0}\) (tương tự kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = - \infty \) hoặc \(f(x) \to - \infty \) khi \(x \to {x_0}\) ).
II. Giới hạn một phía
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\).
Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\).
Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).
*Định lí:
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
III. Giới hạn của hàm số tại vô cực
1. Giới hạn hữu hạn của hàm số tại vô cực
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;a} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} < a\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).
* Nhận xét:
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, k là một số nguyên dương ta có:
\(\mathop {\lim }\limits_{x \to \pm \infty } c = c,\)\(\mathop {\lim }\limits_{x \to \pm \infty } (\frac{c}{{{x^k}}}) = 0\)
2. Giới hạn vô cực của hàm số tại vô cực
a, Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\).
Ta nói hàm số \(f(x)\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right),{x_n} > a\)và \(\lim {x_n} = + \infty \), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to + \infty \) .
b, Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( { - \infty ;a} \right)\).
Ta nói hàm số \(f(x)\)có giới hạn là \( + \infty \) khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right),{x_n} < a\)và \(\lim {x_n} = - \infty \), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to - \infty \)
Từ hai định nghĩa trên, ta có định nghĩa \(f(x) \to - \infty \) khi \(x \to + \infty \) (hay \(x \to - \infty \)) như sau:
c, \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f(x)} \right] = + \infty \)
d, \(\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ { - f(x)} \right] = + \infty \)
* Chú ý:
- \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
- \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
- \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
3. Quy tắc tìm giới hạn của tích và thương tại vô cực
*Giới hạn của tích\(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x).g(x)} \right]\)
*Giới hạn của thương \(\frac{{f(x)}}{{g(x)}}\)
Các quy tắc trên vẫn đúng khi thay \( + \infty \) thành \( - \infty \) (\({x_0}^ - \)hoặc \({x_0}^ + \))