Bài 3.11 trang 79 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:52:04

Đề bài

Xét tính liên tục của các hàm số sau đây tại điểm \({x_0} = 3\).

a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 3{x^2}}}{{x - 3}}\,\,\,khi\,\,\,x \ne 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9\,\,\,\,khi\,\,x = 3\end{array} \right.\)

b) \(f\left( x \right) = \left\{ \begin{array}{l} - x + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 3\\{x^2} - 4x + 3\,\,\,khi\,\,x \ge 3\end{array} \right.\)

Phương pháp giải - Xem chi tiết

a, Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Đây là giới hạn tại điểm dạng vô định \(\frac{0}{0}\) nên phải thực hiện khử mẫu

Đây là hàm phân thức hữu tỉ nên ta thực hiện phân tích đa thức thành nhân tử để khử dạng vô định

b, Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x \right) = f\left( {{x_0}} \right)\)

Hàm số \(y = f\left( x \right)\) đều là hàm đa thức nên khi tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) ta chỉ cần thay \(x = {x_0}\) vào hàm số \(f\left( x \right)\)

Lời giải chi tiết

a, Tập xác định \(D = \mathbb{R}\)

+ Với \({x_0} = 3\) thì \(f\left( 3 \right) = 9\)

+ \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 3{x^2}}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {{x^2}} \right) = {3^2} = 9 = f\left( 3 \right)\)

Do đó, hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 3\)

b)Tập xác định \(D = \mathbb{R}\)

+ Với \({x_0} = 3 \Rightarrow f\left( 3 \right) = {3^3} - 4.3 + 3 = 0\)

+ \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x + 1} \right) =  - 3 + 1 =  - 2\)

+ \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {{x^2} - 4x + 3} \right) = {3^2} - 4.3 + 3 = 0\)

Suy ra, \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)\) vì \(0 \ne  - 2\) do đó hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 3\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"